
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-022-06147-2

1 3

Optimised one‑class classification performance

Oliver Urs Lenz1 · Daniel Peralta2 · Chris Cornelis1

Received: 14 September 2021 / Revised: 10 January 2022 / Accepted: 27 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
We provide a thorough treatment of one-class classification with hyperparameter optimisa-
tion for five data descriptors: Support Vector Machine (SVM), Nearest Neighbour Distance
(NND), Localised Nearest Neighbour Distance (LNND), Local Outlier Factor (LOF) and
Average Localised Proximity (ALP). The hyperparameters of SVM and LOF have to be
optimised through cross-validation, while NND, LNND and ALP allow an efficient form of
leave-one-out validation and the reuse of a single nearest-neighbour query. We experimen-
tally evaluate the effect of hyperparameter optimisation with 246 classification problems
drawn from 50 datasets. From a selection of optimisation algorithms, the recent Malherbe–
Powell proposal optimises the hyperparameters of all data descriptors most efficiently. We
calculate the increase in test AUROC and the amount of overfitting as a function of the
number of hyperparameter evaluations. After 50 evaluations, ALP and SVM significantly
outperform LOF, NND and LNND, and LOF and NND outperform LNND. The perfor-
mance of ALP and SVM is comparable, but ALP can be optimised more efficiently so
constitutes a good default choice. Alternatively, using validation AUROC as a selection
criterion between ALP or SVM gives the best overall result, and NND is the least compu-
tationally demanding option. We thus end up with a clear trade-off between three choices,
allowing practitioners to make an informed decision.

Keywords Data descriptors · Hyperparameter optimisation · Novelty detection · One-class
classification · Semi-supervised outlier detection

Editor: Jesse Davis.

 * Oliver Urs Lenz
 oliver.lenz@ugent.be

 Daniel Peralta
 daniel.peralta@ugent.be

 Chris Cornelis
 chris.cornelis@ugent.be

1 Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent,
Belgium

2 IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium

http://orcid.org/0000-0001-9925-9482
https://orcid.org/0000-0002-7544-8411
https://orcid.org/0000-0002-7854-6025
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06147-2&domain=pdf

 Machine Learning

1 3

1 Introduction

The goal of one-class classification [Tax (2001), also known as novelty, semi-supervised
outlier or semi-supervised anomaly detection], is to form, on the basis of a representative
sample, a model of a target (or positive) class that can later be used to predict whether
unseen instances belong to that target class. Such one-class classification algorithms are
called data descriptors. The difference with binary classification and the closely related
learning from positive and unlabelled data (Bekker & Davis, 2020) lies in the fact that a
data descriptor only uses training data belonging to the target class.

In recent years, one-class classification has been applied to a wide range of problems,
including the detection of tweets promoting hate or extremism (Agarwal & Sureka, 2015),
or generated by bots (Rodríguez-Ruiz et al., 2020), user authentication based on keystroke
dynamics (Antal & Szabó, 2015), writer identification (Hadjadji & Chibani, 2018), detect-
ing abnormal train door operations (Ribeiro et al., 2016), and the identification of different
tumor cell subtypes (Sokolov et al., 2016).

A number of popular data descriptors require setting one or more hyperparameters. In a
recent paper (Lenz et al., 2021), we have identified optimal default hyperparameter values
for a selection of these, and evaluated their performance. These default values allow the
data descriptors to be used on one-class classification problems without negative training
samples. However, for problems where a (limited) sample of negative data is available, this
data can be used to optimise, or ‘tune’, the hyperparameter values. Notably, for all of the
concrete applications of one-class classification listed in the previous paragraph, there was
negative data that could have been used for hyperparameter optimisation. In addition, nega-
tive data is always available when data descriptors are used as building blocks in a multi-
class classification ensemble (Ban & Abe, 2006).

The aim of this paper is to provide empirical evidence for the potential performance
benefits of hyperparameter optimisation. The performance of data descriptors with hyper-
parameter optimisation has previously been evaluated by Janssens et al. (2009) and Swer-
sky et al. (2016). In the present article, we go further, and try to answer the question: “What
is the best way to optimise the hyperparameter values of a data descriptor?”. Whereas both
previous works use a naive grid search to optimise hyperparameter values, we evaluate a
representative selection of optimisation algorithms, and identify the most effective strategy.
We also explain how data descriptors based on nearest neighbour searches can be opti-
mised using efficient leave-one-out validation instead of ordinary cross-validation.

A second question that we address is: “How long should hyperparameter optimisa-
tion run for?” Besides being inefficient, grid search also requires fixing the total number
of evaluations before optimisation begins. In contrast, the optimisation algorithms that we
consider sequentially select points in the hyperparameter space to evaluate. This allows
us to present our results in terms of the number of evaluations, giving practitioners more
insight into the effect of this choice.

We compare the data descriptors from Lenz et al. (2021) that have one or more optimis-
able hyperparameters: Average Local Proximity (ALP), Support Vector Machine (SVM),
Nearest Neighbour Distance (NND), Localised Nearest Neighbour Distance (LNND) and
Local Outlier Factor (LOF).

In the experiments performed by Janssens et al. (2009), SVM and LOF were tied,
ahead of LNND, but the difference was not statistically significant. Swersky et al. (2016)
ranked SVM, NND, LOF and LNND from high to low in that order, but only the difference
between SVM and LNND was statistically significant. The former study did not include

Machine Learning

1 3

NND, and neither study included ALP, which had not yet been proposed at the time. Thus,
ALP remains untested in the context of hyperparameter optimisation, whereas we found in
Lenz et al. (2021) that it is the best-performing data descriptor with default hyperparameter
values (although the difference with SVM was only weakly significant).

Both previous studies evaluated performance with a Nemenyi test on mean ranks
(Demšar 2006). This forced them to amalgamate results from one-class classification prob-
lems derived from the same dataset, of which there were 24 in Janssens et al. (2009) and
30 in Swersky et al. (2016). In order to get more statistical certainty, we draw from a larger
number of datasets (50), and we compare pairs of data descriptors using a clustered Wil-
coxon signed rank test (Rosner et al. 2006) that allows us to use the full results from all 246
one-class classification problems. This choice is additionally motivated by the criticism
that the p-value generated by the Nemenyi test for a pair of machine learning algorithms
is too strongly dependent on the inclusion of other algorithms in the comparison (Benavoli
et al. 2016).

Together, these improvements over the previous studies—using a suitable optimisation
procedure, more datasets and a more precise statistical test, and including ALP—allow us
to provide a stronger answer to our third and final question: “What is the best data descrip-
tor for one-class classification with hyperparameter optimisation?”

We proceed by discussing the various data descriptors (Sect. 2) and optimisation algo-
rithms (Sect. 3) in this article, explaining how our experiments are structured (Sect. 4), dis-
cussing the results of these experiments (Sect. 5) and presenting our conclusions (Sect. 6).

2 Data descriptors

In this section, we list the data descriptors under consideration in the present paper. For a
more detailed discussion, the reader is referred to Lenz et al. (2021). Here we focus on how
the hyperparameters of these data descriptors can be optimised. The goal in each case is to
maximise the area under the receiver operator characteristic (AUROC).

2.1 Support Vector Machine

The Support Vector Machine (SVM) data descriptor was proposed independently by Tax
and Duin (1999a, 1999b, 2004) and Schölkopf et al. (1999, 2001) as an adaptation of the
soft-margin SVM for binary classification (Cortes and Vapnik 1995). Both variants fit a
surface to isolate the training data in the feature space, and allow application of the ker-
nel trick to transform the feature space. The recommended kernel is the Gaussian kernel,
parametrised with a value c ∈ (0,∞) . With the Gaussian kernel, the two variants become
equivalent. We use the Schölkopf variant, which solves an optimisation problem to fit a
hyperplane between most of the target data and the origin, at a maximal distance to the ori-
gin. A hyperparameter � ∈ (0, 1] controls the relative weight placed respectively on max-
imising distance to the origin, and not leaving training instances on the same side as the
origin.

Thus, there are two hyperparameters that have to be chosen, and can be optimised
with training data: � and c. Because many of the optimisation methods that we consider
require compact hyperparameter domains, we reparametrise c as c�

1−c�
 , and optimise c′ in

[10−6, 1 − 10−6] , and restrict the domain of � to [10−6, 1].

 Machine Learning

1 3

In order to optimise � and c′ , we apply stratified fivefold cross-validation to obtain five
splits of the available training data into a smaller training set and a validation set. For each
training set, we select the target class instances to obtain a target set. We evaluate a pair of
hyperparameter values by constructing a model on the target set, querying with the respec-
tive validation sets, and calculating the mean of the resulting AUROC scores. This means
that optimising the hyperparameters of SVM requires constructing five models for each
pair of values to be evaluated.

2.2 Nearest Neighbour Distance

Nearest Neighbour Distance (NND) is a much simpler data descriptor than SVM, and goes
back to at least Knorr and Ng (1997); it classifies instances in accordance with the distance
to their kth nearest neighbour in the target data. In principle, the distance measure can be
chosen freely, but in order to allow the efficient form of optimisation discussed below,
we fix this choice to the Manhattan metric, which generally gives better results than the
Euclidean metric (Lenz et al., 2021). This leaves k as the only hyperparameter to be opti-
mised. Since it encodes a magnitude, we optimise k logarithmically. To avoid having to
work with extremely large arrays, and knowing that its optimal default value is simply 1,
we limit k to min (n, 100 log n).

Because NND is so simple, k can be optimised more efficiently than the hyperparam-
eters of SVM. Firstly, it is not necessary to completely recalculate a new NND model for
each value of k. if kmax is the maximum value for k that we want to consider, we only
require a single sorted kmax nearest neighbour query, since this contains all kth nearest
neighbours for k ≤ kmax.

Secondly, instead of fivefold cross-validation, we use an efficient form of leave-one-out
cross-validation, where each validation set contains a single instance. For fivefold cross-
validation, we would have to create five nearest neighbour search models, one for each
target set corresponding to a fold. To perform leave-one-out cross-validation, we create
a single nearest neighbour search model on the basis of all target set instances. For each
target class instance, we must ensure that it is not also part of the target set corresponding
to its fold, so we query to obtain its kmax + 1 nearest neighbours, and remove the first near-
est neighbour distance (with value 0). For other instances, there is nothing to correct and
we can simply perform a kmax nearest neighbour query. We collect the resulting scores and
calculate a single validation AUROC.

2.3 Localised Nearest Neighbour Distance

Localised Nearest Neighbour Distance (LNND) (de Ridder et al., 1998; Tax & Duin, 1998)
is a simple extension of NND. It divides the kth nearest neighbour distance of an instance
by that kth nearest neighbour’s own kth nearest neighbour distance. This is motivated by
the observation that the typical distance between neighbours in the target set may vary
throughout the feature space, and that the nearest neighbour distance of a test instance
should be relativised accordingly.

As with NND, we adopt the Manhattan metric and optimise k logarithmically, up to
min (n, 100 log n).

We can also perform efficient leave-one-out cross-validation as with NND, but we have
to do some additional work to obtain a correct result. For each target class instance, we

Machine Learning

1 3

have to check whether it is among the k nearest neighbours of its kth nearest target class
neighbour, and if so, substitute the k + 1th nearest neighbour.

2.4 Local Outlier Factor

Local Outlier Factor (LOF) (Breunig et al., 2000) is a more complex realisation of the
idea behind LNND: it relativises the so-called local reachability density of a test instance
against the local reachability density of its k nearest neighbours.

Again as with NND and LNND, we adopt the Manhattan metric and optimise k loga-
rithmically, up to min (n, 100 log n).

The calculation of LOF requires determining the kth nearest neighbour distance of the
ith nearest neighbour of the jth nearest neighbour of a test instance (for all i, j ≤ k). For
this reason, it is no longer feasible to apply the efficient form of leave-one-out cross-valida-
tion described for NND and LNND, and we resort to performing stratified fivefold cross-
validation as with SVM. However, we still retain the efficiency that for each fold, we only
need one query to obtain the kmax nearest neighbours of a test instance.

2.5 Average Localised Proximity

Average Localised Proximity (ALP) (Lenz et al., 2021) aims to be more robust than LNND
but less complex than LOF.

For a choice of integers k and l, the average localised proximity of an instance y is
defined as follows. For each i ≤ k , and each j ≤ l , we establish di[NN j(y)] , the ith neigh-
bour distance of the jth nearest neighbour of y. We then take, for each i, the weighted mean
of these values, to obtain the local ith neighbour distance relative to y:

and use this to relativise the ith nearest neighbour distance of y in the target data di(y) ,
resulting in the ith localised proximity of y:

Finally, we aggregate over the k localised proximities of y by applying the ordered weighted
average *wk ↓ (Yager, 1988), which is the weighted mean of the values sorted from large to
small:

The distance measure used is the Manhattan metric, and the weights wk and wl are linearly
decreasing: p

p(p+1)∕2
,

p−1

p(p+1)∕2
,… ,

1

p(p+1)∕2
 , for p = k, l . This leaves k and l to be optimised,

which respectively determine the scale at which nearest neighbour distances are considered
and the amount of localisation. As with NND, we optimise k and l logarithmically.

Similar to NND and LNND, we only need a single max(kmax, lmax) nearest neighbour
query if we want to evaluate values of k and l up to kmax and lmax . We can also apply
efficient leave-one-out validation, by performing essentially the same correction as for
LNND. In particular, we correct the local distances of a neighbour x of y by considering

(1)Di(y) =
∑

j≤l

wl
j
⋅ di[NN j(y)],

(2)lp i(y) =
Di(y)

Di(y) + di(y)
.

(3)alp(y) = wk
i≤k

↓ lpi(y).

 Machine Learning

1 3

its k + 1 nearest neighbours, and removing either the distance to y or the k + 1 th nearest
neighbour distance.

Increasing k and l has two effects: it draws in more distant neighbours of y, and it
decreases the slope of the weight vectors, making the contribution of successive neigh-
bours more equal. The asymptotic limit of this process is a weight vector with equal
weights everywhere. A more practical limit is that k and l cannot grow beyond the num-
ber of target instances n. However, we can simulate higher values for k and l by truncat-
ing the weight vector and multiplying by a constant to ensure that its sum still equals 1.

This also allows us to address a computational issue with large datasets, that evaluat-
ing a pair of values for k and l on the whole training set involves (k + 1) ⋅ l ⋅ n distance
values. If all three values are large, processing a single array with all distance values
requires a very large amount of memory. For these reasons, we let k and l range up
to 5n, but truncate distance values and weight vectors after min (n, 20 log n) . This is
informed by the knowledge that the optimal default values for k and l are 5.5 log n and
6 log n respectively (Lenz et al., 2021).

3 Optimisation algorithms

Optimisation problems are typically formulated in terms of a problem function
f ∶ P ⟶ ℝ , where the problem space P is a subspace of ℝm for some m that is often
required to be compact. Depending on the context, the goal of optimisation is to find
points in P that minimise or maximise f. In the present article, we wish to maximise the
validation AUROC of our data descriptors, and the problem space is determined by the
hyperparameters that we optimise.

There is an important distinction between algorithms that aim to find a local opti-
mum of f in P, and those that aim to identify the global optimum of f in P. An essential
characteristic of global optimisation algorithms is that they have to balance the explora-
tion of areas of the problem space with large uncertainty and the exploitation of areas
where function performance is known to be good.

An intrinsic disadvantage of local optimisation algorithms is that they require a
choice of starting point, and may get stuck in a local optimum if this starting point is
chosen poorly. However, the optimisation problems of finding the best hyperparameter
values for our data descriptors may be close to unimodal/quasiconvex (Stephenson et al.,
2021), in which case this risk could be relatively small. For this reason, we include two
classical local optimisation algorithms that are easy to implement.

3.1 Random search

Purely random search is a surprisingly potent global optimisation strategy. By continu-
ing to evaluate arbitrary points in the problem space, we can expect to eventually get
arbitrarily close to the global optimum. In particular, random search is a more efficient
algorithm than grid search (Bergstra & Bengio, 2012). Because this strategy uses no
information from previous evaluations, it serves as a good baseline.

Machine Learning

1 3

3.2 Hooke–Jeeves

The local search algorithm proposed by Hooke and Jeeves (1961) passes through the
problem space in steps. Each step follows a pattern, which is the vector sum of a num-
ber of substeps along each coordinate axis. The pattern is adjusted with each step, by
optionally adding or subtracting a substep along each coordinate axis, depending on
which option results in the greatest decrease in the objective function value. If the pat-
tern cannot be adjusted to produce a step with any improvement, a new pattern is cre-
ated from scratch. If no such pattern can be found either, the substep size is decreased.

We use the implementation provided by pymoo (Blank & Deb, 2020) and its default
values. As starting values we use the optimal default values identified in Lenz et al.
(2021).

3.3 Nelder–Mead

The local search algorithm proposed by Nelder and Mead (1965) is based on an earlier
proposal by Spendley et al. (1962). It iterates on m + 1 points that can be viewed as the
vertices of an m-dimensional simplex. The algorithm lets this simplex ‘walk’ through the
problem space by replacing its worst vertex in each iteration. Each step is directed towards
the mid-point of the remaining vertices. The new vertex is either placed between the worst
vertex and this mid-point (shrinking the simplex), or beyond the midpoint (reflecting and
optionally extending it). If none of these options improve upon the worst vertex, the entire
simplex is shrunk, with only the best vertex remaining in place.

The theoretical performance of Nelder–Mead optimisation had long been unclear, until
Torczon (1989) demonstrated with a concrete example that Nelder–Mead can converge on
points that are not local optima, even with problems that are twice differentiable. Neverthe-
less, Nelder–Mead optimisation has been very popular due to its relative simplicity, and
because it seems to converge very quickly in many simple practical applications (Wright
1995).

We use the implementation provided by SciPy (Virtanen et al. 2020), with starting sim-
plices centred around the optimal default values identified in Lenz et al. (2021).

3.4 Kushner–Sittler

A global optimisation method was first proposed by Kushner (1962, 1964), based in part
on unpublished work by Robert A Sittler (see Betrò (1991), Jones (2001) and Brochu et al.
(2009) for overviews of later developments). This has been referred to as simply global
optimisation, or Bayesian optimisation, because its central idea is to iteratively use the
Bayesian information criterion to select the next point in the problem space to evaluate. We
assume that the unknown problem function is drawn from a random distribution of func-
tions, which is traditionally modelled as a Gaussian process. In each step, we can calculate
the conditional probability p(y|x) that the problem function will obtain certain values at a
given point x in the problem space, in light of the function values that have already been
calculated. These conditional probabilities are then reduced to a single score for each x
with an activation function, and the point with the maximal such score is selected as the
next point to evaluate. The activation function most often used today, already hinted at in

 Machine Learning

1 3

Kushner (1962), is expected improvement, the expected value of max(y − y∗, 0) under the
model for some y∗ ∈ ℝ , typically the largest evaluated function value so far.

Kushner–Sittler optimisation transforms the original optimisation problem into a series
of new optimisation problems for each iteration. These new optimisations incur a certain
cost themselves, but this cost is only dependent on the dimensionality of the original prob-
lem, so for problems that are costly to evaluate, the trade-off is worthwhile. Note also that
as with the original problem, these optima can generally only be approximated, but it is
(often tacitly) assumed that this is not problematic.

We use the implementation provided by Emukit (Paleyes et al. 2019), with the first point
chosen randomly.

3.5 Bergstra–Bardenet

A more recent variant of Kushner–Sittler optimisation, motivated in particular by high-
dimensional and conditional problem spaces, is the tree-structured Parzen estimator (TPE)
proposal by Bergstra et al. (2011). It lets the target value y∗ correspond to a quantile of the
evaluated function values. This induces a split between small and large values, and the cor-
responding distributions p(y < y∗) and p(y > y∗) , which can be modelled with two Parzen
Estimators l(x) and g(x). By reformulating p(y|x) in terms of p(x|y), p(y) and p(x), the
authors then show that the expected improvement of the original model is maximal when
g(x)

l(x)
 is maximal.
We use the Adaptive TPE implementation of hyperopt (Bergstra et al. 2011).

3.6 Malherbe–Powell

Global optimisation algorithms often proceed from the assumption that the problem func-
tion satisfies certain smoothness conditions. In particular, for any k > 0 , we can define the
class of k-Lipschitz functions as those functions f that satisfy:

Malherbe and Vayatis (2017) propose that we can use this assumption to restrict the search
to certain parts of the problem space. They propose the LIPO algorithm, in which random
candidates are drawn from the problem space, but only those candidates are evaluated that
potentially improve upon the current optimum, in view of the candidates evaluated so far
and (4).

In general, k may be difficult to estimate, and we simply want to assume that some such
k exists for a problem function. For this purpose, Malherbe and Vayatis (2017) also propose
the AdaLIPO algorithm. This alternates LIPO with purely random search, and increases k
whenever (4) is no longer satisfied.

AdaLIPO was further modified into MaxLIPO and implemented into the dlib library
by King (2009, 2017). MaxLIPO presents three improvements. Firstly, it incorporates a
noise term that prevents k from approaching infinity if the problem function is not in fact
k-Lipschitz because it has small discontinuities. Secondly, it employs separate values of k
for each dimension. And thirdly, instead of selecting new candidates at random, it identifies
the candidate with the largest potential improvement in light of (4).

A more fundamental problem of AdaLIPO that carries over to MaxLIPO is that while it
is seemingly able to quickly locate the neighbourhood of the global optimum, it then takes

(4)∀x1, x2 ∈ A ∶ ||f (x1) − f (x2)
|| ≤ k ⋅ ||x1 − x2

||

Machine Learning

1 3

much longer to approach the optimum itself. This can be understood, since by consider-
ing the maximal potential improvement, rather than some form of expected improvement,
these algorithms place a greater emphasis on exploration than exploitation. To address this,
King (2017) lets MaxLIPO alternate with the trust region approach of the local optimiser
BOBYQA (Powell, 2009), a bounded version of the earlier NEWUOA proposal (Powell,
2004).

4 Experimental setup

In order to enable comparison with using default hyperparameter values, we closely follow
the experimental setup of Lenz et al. (2021). We use the same collection of 246 one-class
classification problems, drawn from 50 datasets from the UCI machine learning repository
(Dua & Graff, 2019). For each problem, one class is selected as the target/positive class,
and the instances from the other classes are combined to form the other/negative class.
Instances are rescaled through division by the interquartile range (Rousseeuw & Croux,
1993) of each feature in the target class. We have implemented the data descriptors in our
own open-source Python wrapper fuzzy-rough-learn1 (Lenz et al., 2020), which uses scikit-
learn (Pedregosa et al. 2011) as a backend for SVM and nearest neighbour queries.

For each one-class classification problem, we apply stratified fivefold cross-validation.
We measure the performance of a data descriptor with specific hyperparameter values
in terms of the area under the receiver operator curve (AUROC). For each division, we
measure validation AUROC using nested stratified cross- or leave-one-out validation as
explained in Sect. 2, as well as test AUROC by retraining the data descriptor on all of the
training data and evaluating its performance on the test data.

We maximise validation AUROC by applying the optimisation algorithms from Sect. 3.
Each optimiser is allowed a maximum budget of 50 evaluations of hyperparameter values.
Although the NND, LNND, LOF and ALP hyperparameters k and l are discrete, in order
to be able to apply the selected optimisation algorithms, we optimise them as if they were
continuous.2 As a result, subsequent steps of the optimisation search may target different
points in the problem space that are discretised back to the same concrete value(s), which
are not evaluated again. Thus, with local optimisers that have reached a local optimum, as
well as with small datasets in general, the optimisation search may never reach 50 evalua-
tions. Therefore, we terminate all optimisation searches after 100 steps.

We structure our analysis in terms of the number of evaluations. For each cross-valida-
tion division and number of evaluations, we use the hyperparameter values that maximise
validation AUROC up to that point. We start our analysis by identifying the most suitable
optimiser for each data descriptor, and adopt this for the rest of our analysis. We compare
data descriptors both by summarising performance with the mean test AUROC, and by
looking at individual results at the level of cross-validation divisions. In both cases, we
apply a weighting scheme such that the 50 datasets from which the one-classification prob-
lems are drawn all contribute equally. In scatter plots, this is reflected in the size of the
markers. We measure rank correlation with the weighted Kendall’s � (Vigna, 2015).

1 https:// github. com/ oulenz/ fuzzy- rough- learn.
2 We note that more generally, for any classification algorithm, performance metrics like AUROC, accu-
racy, precision and recall are non-continuous because a finite number of instances can only be subjected to
a finite number of rankings.

https://github.com/oulenz/fuzzy-rough-learn

 Machine Learning

1 3

In order to determine statistical significance, we apply clustered Wilcoxon signed-
rank tests (Rosner et al., 2006) on the mean AUROC scores across folds for each one-
class classification problem. When we compare data descriptors to each other, we use the
Holm–Bonferroni method (Holm, 1979) to correct for family-wise error.

5 Results and analysis

The results of our experiments allow us to answer the three questions raised in the
Introduction.

5.1 What is the best way to optimise the hyperparameter values of a data
descriptor?

Figure 1 shows the performance of the different optimisers with the data descriptors. We
can get an idea of the difficulty of these optimisation problems by looking at the baseline
random strategy. For NND, our maximum budget of fifty evaluations is essentially enough
for random search to find the global maxima, while for LOF, it comes reasonably close.
LNND and ALP are more difficult, and random search clearly lags behind the other opti-
misation strategies with SVM. Taking into account the dimensionality of the respective
problem spaces, it appears that the problem curves of LNND and SVM are relatively hard
to optimise.

It is clear that the two local optimisation methods, Nelder–Mead and Hooke–Jeeves,
generally fail to find the global optima because they get stuck in a local optimum. Neither
method performs clearly better than the other. Nevertheless, if ease of implementation is a
larger priority than performance, they may be an acceptable option for ALP and SVM. For
the data descriptors with one hyperparameter, simple random search is to be preferred.

Of the global algorithms, the performance of Kushner–Sittler is surprisingly poor, in
particular with NND and LOF, where it appears to stall below the level reached by the best
local algorithm. Closer inspection reveals that it is too strongly focused on exploitation
over exploration, and will often evaluate long series of points in the problem space that
are very close together. This may be due to the chosen implementation, or the fact that the
hyperparameters k and l are locally constant.

The overall best-performing method is Malherbe–Powell, with Bergstra–Bardenet in
clear second place. Malherbe–Powell finds the highest AUROC for all data descriptors,
except NND, where the difference with Bergstra–Bardenet is minimal (1.4 × 10−4). There-
fore, we will use the results of Malherbe–Powell for the rest of this section. However, we
also note that some of the differences are very small, and practitioners may want to priori-
tise ease of implementation when selecting an optimiser.

Figure 2 shows the distribution of the hyperparameter values after 50 evaluations. These
distributions are relatively uniform, which suggests that the chosen parametrisations are
efficient, in the sense that the optimisation algorithm doesn’t have to spend unnecessary
evaluations exploring sparse areas of the hyperparameter space.3 However, for LOF (7.3%),
LNND (8.6%) and especially NND (39%), there is a substantial minority of problems for

3 We also find for many problems that different cross-validation divisions optimise to different values,
which may indicate that the response curves are somewhat flat and noisy.

Machine Learning

1 3

Fig. 1 Weighted mean validation AUROC of data descriptors with hyperparameters optimised by a number
of different algorithms

 Machine Learning

1 3

which the optimal value is simply 1. In the case of NND, for which 1 is the default value,
this indicates that k often doesn’t need to be optimised. For LNND, a large number of opti-
mal values (23%) are within 1% of the maximum, but this is in most cases due to the fact
that k cannot increase beyond n, rather than our imposed limit of 100 log n.

5.2 How long should hyperparameter optimisation run for?

Figure 3 shows the weighted mean test AUROC of the data descriptors. The data
descriptors display varying sensitivity to hyperparameter optimisation. All test AUROC
curves increase steeply for 4 evaluations and then flatten out. However, for SVM, the
initial rise is steeper and its curve continues to increase for much longer, allowing it to
surpass LOF, NND and ALP even though it starts quite low. LNND improves even more

Fig. 2 Distribution of selected hyperparameter values after 50 evaluations with Malherbe–Powell optimisa-
tion, for each of the 246 one-class classification problems and for each fivefold cross-validation division.
Point size corresponds to the weight of a problem, which corresponds inversely to the number of problems
derived from the same original dataset

Machine Learning

1 3

steeply, but because it starts out very poorly, remains the worst-performing data descrip-
tor. The data descriptors approach their final scores (after 50 evaluations) to within
0.001 points after respectively 5 (NND), 10 (LNND and LOF), 13 (ALP) and 37 (SVM)
evaluations.

The test AUROC curves in Fig. 3 don’t achieve the same scores as the validation
AUROC curves for Malherbe–Powell optimisation in Fig. 1. This difference can be
interpreted as overfitting. Among the data descriptors optimised with leave-one-out val-
idation, it is largest for LNND (0.036 after fifty evaluations), followed by ALP (0.012)
and NND (0.0066), while for those optimised with fivefold cross-validation, it is larger
for LOF (0.016) than for SVM (0.0073). Note that LNND and LOF, with one hyperpa-
rameter, show more overfitting than, respectively, ALP and SVM, with two hyperparam-
eters. The weighted Kendall’s � for the amount of overfitting after 50 evaluations ranges
from 0.31 for SVM and LNND to 0.59 for SVM and NND. The amount of overfitting
should be taken into account when estimating test AUROC or selecting data descriptors
on the basis of validation AUROC. However, the numbers cited above are dependent
on the mix of datasets that we use: for all data descriptors, validation AUROC becomes
increasingly accurate as the target set size grows (Fig. 4).

When we apply a clustered Wilcoxon signed rank test to compare the test AUROC
obtained with hyperparameter optimisation and the test AUROC obtained with default
hyperparameter values from Lenz et al. (2021), we find that optimised values start to
outperform default values with great certainty (p < 0.01) within 2 (LNND, ALP), 3
(LOF, SVM) and 4 (NND) evaluations. With optimised values, SVM, LOF and NND
also perform significantly better (p < 0.01) than ALP, the best data descriptor with
default values, after 4 (SVM), 5 (LOF) and 20 (NND) evaluations. Even after fifty eval-
uations, LNND with optimised values still performs worse than ALP with default val-
ues. Hyperparameter optimisation is not guaranteed to increase AUROC for any of the
data descriptors, especially with smaller datasets (Fig. 5).

Fig. 3 Weighted mean test AUROC of data descriptors, with hyperparameters optimised by the Malherbe–
Powell algorithm

 Machine Learning

1 3

Fig. 4 Difference between test and validation AUROC as a function of target class size n. Point size cor-
responds to the weight of a problem, which corresponds inversely to the number of problems derived from
the same original dataset

Fig. 5 Increased or decreased AUROC due to hyperparameter optimisation over default hyperparameter
values, as a function of target class size n. Point size corresponds to the weight of a problem, which cor-
responds inversely to the number of problems derived from the same original dataset

Machine Learning

1 3

5.3 What is the best data descriptor for one‑class classification
with hyperparameter optimisation?

The test AUROC scores after 50 evaluations are highly rank-correlated: the weighted
Kendall’s � ranges from 0.74 (SVM and LNND) to 0.86 (SVM and NND). To determine
whether the differences in performance are statistically significant, we perform one-
sided clustered Wilcoxon signed rank tests. The resulting p-values after each evaluation
are displayed in Fig. 6. The p-value for the opposite test can be obtained by subtracting
the respective value from 1. Tests with LNND are omitted from Fig. 6 since the corre-
sponding p-values don’t rise above 0.01. Table 1 lists the p-values after 50 evaluations,
corrected for multiple testing.

Based on these experiments, we can confidently say that with sufficient evaluations,
ALP and SVM perform better than NND, LOF and LNND, and that NND and LOF also
perform better than LNND. We have far less certainty about the relative performance
of ALP and SVM, and of NND and LOF. Figure 6 suggests that LOF generally outper-
forms NND, and that when the number of evaluations is small, ALP outperforms SVM,

Fig. 6 One-sided p-values of clustered Wilcoxon signed rank tests that one data descriptor is better than
another (uncorrected for multiple testing)

Table 1 One-sided p-values of clustered Wilcoxon signed-rank tests of AUROC after 50 evaluations, test-
ing row data descriptor > column data descriptor, with Holm–Bonferroni family-wise error correction
applied to each row

ALP LOF NND LNND

SVM 0.29 0.0079 0.037 < 0.0001
ALP 0.00091 0.0077 < 0.0001
LOF ≥ 1 < 0.0001
NND 0.00037

 Machine Learning

1 3

and vice-versa when the number of evaluations is large, but there is a large possibility
that these observations are simply due to chance.

If we focus on the performance of SVM and ALP after 50 evaluations (Table 2), we see
that SVM obtains a higher AUROC than ALP slightly more often than vice-versa, both
on validation and test data. This confirms that the average performance of ALP and SVM
is very close in practice. However, for individual classification problems, the choice still
matters. We note that which of these two data descriptor performs better is fairly consist-
ent between validation and test data. If for each classification problem, we choose the data
descriptor that obtains a higher validation AUROC (choosing ALP in event of a tie), it will
perform worse on test data than the other data descriptor in only 21% of cases. The advan-
tage of this combination of ALP and SVM over either of ALP or SVM on its own is highly
significant (p < 0.0001), regardless of whether we choose for each fold separately or on the
basis of the mean validation AUROC across folds.

One factor that plays a role in the relative performance of SVM and ALP is the difficulty
of the one-class classification problem. For the purpose of the present analysis, we can

Table 2 Fraction of one-class classification problems with higher training and test AUROC by ALP or
SVM

Validation AUROC Test AUROC

ALP < SVM ALP = SVM ALP > SVM Total

ALP < SVM 0.37 0.031 0.088 0.49
ALP = SVM 0.00080 0.033 0.0052 0.039
ALP > SVM 0.12 0.038 0.31 0.47
Total 0.49 0.10 0.40

Fig. 7 Difference between ALP and SVM AUROC, as a function of the difficulty of one-class classification
problems, expressed by the maximum of ALP and SVM AUROC. Point size corresponds to the weight of
a problem, which corresponds inversely to the number of problems derived from the same original dataset

Machine Learning

1 3

express this as the maximum of the AUROC achieved by ALP and SVM. Figure 7 plots the
relative performance of ALP and SVM against this difficulty. SVM is better able to sepa-
rate more difficult problems, but for problems for which a good AUROC of 0.8 or more can
be achieved, ALP beats SVM more often (46%) than vice-versa (41%), with a weighted
mean difference of 0.0021.

Finally, Fig. 8 displays the run times of hyperparameter optimisation as a function of the
number of evaluations. These run times are implementation-dependent, but we can never-
theless make a number of broad observations. For SVM, run time is directly proportional
to the number of evaluations, as no calculations are reused. NND, LNND and LOF can
effectively be optimised in constant time, since the initial nearest neighbour queries domi-
nate. The run time of LOF is higher because it uses fivefold cross-validation and needs five
nearest neighbour queries. For ALP, we observe a considerable amount of additional run
time per evaluation. Looking at individual evaluations, we find that their run time varies
wildly, seemingly due to the computational load of working with large arrays when k and l
are large.

The higher run time required by SVM for additional evaluations is compounded by the
finding, reported above, that optimisation of SVM requires more evaluations than ALP,
LOF, LNND and especially NND. This is illustrated by the fact that the curves of the last
three data descriptors in Fig. 8 end before 50 evaluations.

6 Conclusion

In this paper, we have presented a thorough analysis of hyperparameter optimisation for
five data descriptors, SVM, NND, LNND, LOF and ALP. We have explained how NND,
LNND and ALP can be optimised efficiently with a single nearest neighbour query
and leave-one-out validation, while SVM requires building a new model for each addi-
tional hyperparameter evaluation. We then evaluated the performance of hyperparameter

Fig. 8 Mean run times (5 runs) of hyperparameter optimisation with Malherbe–Powell on a training set
with 1000 target class instances and 1000 other instances, drawn from the miniboone dataset (target class 1)

 Machine Learning

1 3

optimisation empirically, based on a large selection of 246 one-class classification prob-
lems drawn from 50 datasets.

From a selection of optimisation algorithms, the recent Malherbe–Powell approach pro-
vides the best overall performance with all five data descriptors. LNND and LOF are rela-
tively sensitive to overfitting, but in all cases overfitting reduces with target set size. For all
data descriptors, optimised hyperparameters significantly outperform default hyperparam-
eter values after a handful of evaluations. As predicted, different hyperparameter values
can be evaluated more efficiently for NND, LNND, LOF and ALP than for SVM. In addi-
tion, these data descriptors also require fewer evaluations than SVM. After 50 evaluations,
ALP and SVM significantly outperform LOF, NND and LNND, and LOF and NND in turn
perform better than LNND. SVM also outperforms ALP on our datasets, but the difference
is not significant.

A more detailed look at the difference between ALP and SVM revealed that their
strengths are to some extent complementary, and that selecting one or the other based on
their validation AUROC gives the best results. SVM has a strong relative advantage with
difficult one-class classification problems, while ALP performs better with problems with
which a good AUROC of 0.8 or higher can be achieved.

Overall, we come to the following conclusion. NND is a very simple data descriptor
that can be optimised very efficiently. While the resulting gain in performance is limited, it
nevertheless leads to results that are generally better than what can be obtained with a data
descriptor with default hyperparameter values. SVM is a data descriptor with excellent per-
formance, but it is expensive to optimise. The performance of ALP rivals that of SVM, and
potentially surpasses it with one-class classification problems that admit a good solution,
but it can be optimised much more efficiently.

Therefore, we find that ALP is a good default choice, while NND may appeal to prac-
titioners constrained by a smaller computational budget. If the absolute best performance
is desired, we recommend that practitioners consider both ALP and SVM, and make the
choice dependent on validation AUROC.

In future research, we think that it could be worthwhile to investigate in greater detail
what properties of datasets determine the relative strengths and weaknesses of ALP and
SVM. A deeper understanding of this question could in turn be applied to modify the ALP
and SVM algorithms. In addition, it would be useful if the computational cost of optimis-
ing SVM and ALP could be reduced.

We have focused our attention in this paper on a handful of hyperparameters with the
most immediate impact on the classification of different datasets. But these are not the only
choices available to a practitioner. Hyperparameter optimisation is a specific form of model
selection, and conversely, any modification to a classification algorithm can be seen as a
hyperparameter choice. In particular, one large topic that we have set aside in the present
paper is the possibility to change how similarity and difference are measured, by choos-
ing a different metric, kernel and/or scaling function. These are essentially open-ended
choices, so part of the challenge lies in delineating the search area.

Another avenue for future research is the effect of the quality and quantity of the nega-
tive instances that are available for hyperparameter optimisation. This could provide guid-
ance as to when such a negative sample is insufficiently representative for binary classifica-
tion, yet still good enough to make hyperparameter optimisation beneficial. However, this
question may be difficult to answer in general terms, since samples of negative data can be
unrepresentative in ways that are particular to a specific problem. In any case, establishing
a collection of one-class classification problems that are not derived from multi-class prob-
lems would provide a useful reality check in this regard.

Machine Learning

1 3

In the nearby future, we plan to investigate how the optimisation of hyperparameters can
best be integrated into data descriptor ensembles in a multi-class setting.

Funding The research reported in this paper was conducted with the financial support of the Odysseus pro-
gramme of the Research Foundation – Flanders (FWO). D. Peralta is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO, 170303/12X1619N).

Data availability All datasets used in this work are freely available from the UCI machine learning reposi-
tory (https:// archi ve. ics. uci. edu/ ml/ index. php).

Code availability The data descriptors used in this paper have been implemented in the Python library
fuzzy-rough-learn (https:// github. com/ oulenz/ fuzzy- rough- learn). The implementations of the optimisation
algorithms used in this paper are listed in Sect. 3.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Agarwal, S., & Sureka, A. (2015). Using KNN and SVM based one-class classifier for detecting online radi-
calization on Twitter. ICDCIT 2015: Proceedings of the 11th international conference on distributed
computing and internet technology (pp. 431–442). Springer.

Antal, M., & Szabó, L. Z. (2015). An evaluation of one-class and two-class classification algorithms for
keystroke dynamics authentication on mobile devices. CSCS 2015: Proceedings of the 20th interna-
tional conference on control systems and computer science (pp. 343–350). IEEE.

Ban, T., & Abe, S. (2006). Implementing multi-class classifiers by one-class classification methods. IJCNN
2006: Proceedings of the IEEE international joint conference on neural networks (pp. 327–332).
IEEE.

Bekker, J., & Davis, J. (2020). Learning from positive and unlabeled data: A survey. Machine Learning,
109(4), 719–760.

Benavoli, A., Corani, G., & Mangili, F. (2016). Should we really use post-hoc tests based on mean-ranks?
Journal of Machine Learning Research, 17(5), 152–161.

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B. (2011). Algorithms for hyper-parameter optimization. In:
NIPS 2011: Proceedings of the 25th annual conference on neural information processing systems,
NIPS, advances in neural information processing systems (vol. 24, pp. 2546–2554)

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(10), 281–305.

Betrò, B. (1991). Bayesian methods in global optimization. Journal of Global Optimization, 1(1), 1–14.
Blank, J., & Deb, K. (2020). Pymoo: Multi-objective optimization in Python. IEEE Access, 8, 89497–89509.
Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outli-

ers. SIGMOD 2000: Proceedings of the ACM international conference on Management of data (pp.
93–104). ACM.

Brochu, E., Cora, V.M., de Freitas, N. (2009). A tutorial on Bayesian optimization of expensive cost func-
tions, with application to active user modeling and hierarchical reinforcement learning. Tech. Rep.
UBC TR-2009-023, University of British Columbia, Department of Computer Science. Retrieved from
http:// arxiv. org/ abs/ 1012. 2599

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
de Ridder, D., Tax, D. M. J., & Duin, R. P. W. (1998). An experimental comparison of one-class classifica-

tion methods. ASCI‘98: Proceedings of the fourth annual conference of the advanced school for com-
puting and imaging (pp. 213–218). ASCI.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7(1), 1–30.

Dua, D., Graff, C. (2019). UCI machine learning repository. Retrieved from http:// archi ve. ics. uci. edu/ ml
Hadjadji, B., & Chibani, Y. (2018). Two combination stages of clustered one-class classifiers for writer

identification from text fragments. Pattern Recognition, 82, 147–162.

https://archive.ics.uci.edu/ml/index.php
https://github.com/oulenz/fuzzy-rough-learn
http://arxiv.org/abs/1012.2599
http://archive.ics.uci.edu/ml

 Machine Learning

1 3

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6(2), 65–70.

Hooke, R., & Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical problems. Journal
of the ACM, 8(2), 212–229.

Janssens, J. H. M., Flesch, I., & Postma, E. O. (2009). Outlier detection with one-class classifiers from ML
and KDD. ICMLA 2009: Proceedings of the Eighth International Conference on Machine Learning
and Applications (pp. 147–153). IEEE.

Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of
Global Optimization, 21(4), 345–383.

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10(60),
1755–1758.

King, D.E. (2017). A global optimization algorithm worth using. Retrieved January 6, 2021 from http:// blog.
dlib. net/ 2017/ 12/a- global- optim izati on- algor ithm- worth. html

Knorr, E. M., & Ng, R. T. (1997). A unified notion of outliers: Properties and computation. KDD-97: Pro-
ceedings of the Third International Conference on Knowledge Discovery and Data Mining (pp. 219–
222). AAAI.

Kushner, H. J. (1962). A versatile stochastic model of a function of unknown and time varying form. Jour-
nal of Mathematical Analysis and Applications, 5(1), 150–167.

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, 86(1), 97–106.

Lenz, O. U., Peralta, D., & Cornelis, C. (2020). fuzzy-rough-learn 0.1: A Python library for machine learn-
ing with fuzzy rough sets. IJCRS 2020: Proceedings of the International Joint Conference on Rough
Sets (pp. 491–499). Springer.

Lenz, O. U., Peralta, D., & Cornelis, C. (2021). Average Localised Proximity: A new data descriptor with
good default one-class classification performance. Pattern Recognition, 118, 107991.

Malherbe, C., Vayatis, N. (2017). Global optimization of Lipschitz functions. In: ICML 2017: Proceedings
of the 34th international conference on machine learning, proceedings of machine learning research
(vol. 70, pp. 2314–2323)

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal,
7(4), 308–313.

Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., & González, J. (2019). Emulation of physical pro-
cesses with Emukit. NeurIPS 2019: Workshop on Machine Learning and the Physical Sciences.
NeurIPS.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12(85), 2825–2830.

Powell, M.J.D. (2004). The NEWUOA software for unconstrained optimization without derivatives. Tech.
Rep. NA2004/08, University of Cambridge, Department of Applied Mathematics and Theoretical
Physics. Retrieved from http:// www. damtp. cam. ac. uk/ user/ na/ NA_ papers/ NA2004_ 08. pdf

Powell, M.J.D. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives.
Tech. Rep. NA2009/06, University of Cambridge, Department of Applied Mathematics and Theoreti-
cal Physics. Retrieved from http:// www. damtp. cam. ac. uk/ user/ na/ NA_ papers/ NA2009_ 06. pdf

Ribeiro, R. P., Pereira, P., & Gama, J. (2016). Sequential anomalies: A study in the railway industry.
Machine Learning, 105(1), 127–153.

Rodríguez-Ruiz, J., Mata-Sánchez, J. I., Monroy, R., Loyola-Gonzalez, O., & López-Cuevas, A. (2020). A
one-class classification approach for bot detection on Twitter. Computers & Security, 91, 101715.

Rosner, B., Glynn, R. J., & Lee, M. L. T. (2006). The Wilcoxon signed rank test for paired comparisons of
clustered data. Biometrics, 62(1), 185–192.

Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the Ameri-
can Statistical Association, 88(424), 1273–1283.

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C. (1999). Estimating the sup-
port of a high-dimensional distribution. Tech. Rep. MSR-TR-99-87, Microsoft Research, Redmond,
Washington

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the sup-
port of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

Sokolov, A., Paull, E. O., & Stuart, J. M. (2016). One-class detection of cell states in tumor subtypes. PSB
2016: Proceedings of the 21st Pacific Symposium on Biocomputing (pp. 405–416). World Scientific.

Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential application of simplex designs in optimi-
sation and evolutionary operation. Technometrics, 4(4), 441–461.

http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html
http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2004_08.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

Machine Learning

1 3

Stephenson, W., Frangella, Z., Udell, M., Broderick, T. (2021). Can we globally optimize cross-validation
loss? Quasiconvexity in ridge regression. In: NeurIPS 2021: Proceedings of the thirty-fifth conference
on neural information processing systems, NeurIPS, advances in neural information processing sys-
tems (vol. 34)

Swersky, L., Marques, H. O., Sander, J., Campello, R. J. G. B., & Zimek, A. (2016). On the evaluation of
outlier detection and one-class classification methods. DSAA 2016: Proceedings of the 3rd IEEE Inter-
national Conference on Data Science and Advanced Analytics (pp. 1–10). IEEE.

Tax, D.M.J. (2001). One-class classification: Concept learning in the absence of counter-examples. PhD
thesis, Technische Universiteit Delft

Tax, D. M. J., & Duin, R. P. W. (1998). Outlier detection using classifier instability. SSPR/SPR 1998: Pro-
ceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
and Structural and Syntactic Pattern Recognition (pp. 593–601). Springer.

Tax, D. M. J., & Duin, R. P. W. (1999). Data domain description using support vectors. ESANN 1999: Pro-
ceedings of the Seventh European Symposium on Artificial Neural Networks, D-Facto (pp. 251–256).
ESANN.

Tax, D. M. J., & Duin, R. P. W. (1999). Support vector domain description. Pattern Recognition Letters,
20(11–13), 1191–1199.

Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54(1), 45–66.
Torczon, V.J. (1989). Multidirectional search: a direct search algorithm for parallel machines. PhD thesis,

Rice University
Vigna, S. (2015). A weighted correlation index for rankings with ties. In: WWW ‘15: Proceedings of the

24th international conference on World Wide Web (pp. 1166–1176)
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peter-

son, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson. E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fun-
damental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.

Wright, M.H. (1995). Direct search methods: Once scorned, now respectable. In: Numerical analysis
1995: Proceedings of the 16th Dundee Biennial conference on numerical analysis, Longman, Pitman
research notes in mathematics series (vol. 344, pp. 191–208)

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking.
IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183–190.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Optimised one-class classification performance
	Abstract
	1 Introduction
	2 Data descriptors
	2.1 Support Vector Machine
	2.2 Nearest Neighbour Distance
	2.3 Localised Nearest Neighbour Distance
	2.4 Local Outlier Factor
	2.5 Average Localised Proximity

	3 Optimisation algorithms
	3.1 Random search
	3.2 Hooke–Jeeves
	3.3 Nelder–Mead
	3.4 Kushner–Sittler
	3.5 Bergstra–Bardenet
	3.6 Malherbe–Powell

	4 Experimental setup
	5 Results and analysis
	5.1 What is the best way to optimise the hyperparameter values of a data descriptor?
	5.2 How long should hyperparameter optimisation run for?
	5.3 What is the best data descriptor for one-class classification with hyperparameter optimisation?

	6 Conclusion
	References

