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Covering based rough sets are a generalization of classical rough sets, in which the
traditional partition of the universe induced by an equivalence relation is replaced by a
covering. Many definitions have been proposed for the lower and upper approximations
within this setting. In this paper, we recall the most important ones and organize them into
sixteen dual pairs. Then, to provide more insight into their structure, we investigate order
relationships that hold among the approximation operators. In particular, we study a
point-wise partial order for lower (resp., upper) approximation operators, that can be used
to compare their respective approximation fineness. We establish the Hasse diagram for
the partial order, showing the relationship between any pair of lower (resp., upper)
operators, and identifying its minimal and maximal elements.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Rough sets, introduced by Pawlak [9] in 1982, provide approximations of concepts in the presence of incomplete
information. Essentially, rough set analysis makes statements about the membership of some element x of a non-empty
universe set U to the concept of which A # U is a set of examples, based on the indiscernibility between x and the elements
of A. In particular, x belongs to the lower approximation of A if all elements indiscernible from x belong to A, and to the upper
approximation of A if at least one element indiscernible from x is a member of A. In Pawlak’s original proposal, indiscernibil-
ity is modeled by an equivalence relation on U.

Since then, many generalizations of rough set theory have been proposed. A first one is to replace the equivalence relation
by a general binary relation. In this case, the binary relation determines collections of sets that no longer form a partition of U
[6–8,12,41]. This generalization has been used in applications with incomplete information systems and tables with contin-
uous attributes [4,5,24,26,42]. A second generalization is to replace the partition obtained by the equivalence relation with a
covering; i.e., a collection of non-empty sets with union equal to U [14,21,25,36,38,40]. In this paper, we focus on the latter
generalization, called covering based rough sets. Some connections between the two generalizations have also been estab-
lished, for example in [23,29,37,41].

Unlike in classical rough set theory, there is no unique way to define lower and upper approximation operators in
covering based rough set theory. In fact, different equivalent characterizations of the classical approximations cease to be
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equivalent when the partition is generalized by a covering. Based on this observation, in [25], Yao and Yao considered twenty
pairs of covering based lower and upper approximation operators, where each pair is governed by a duality constraint. Other
operators outside this framework appear for example in [21], where Yang and Li present a summary of seven non-dual pairs
of approximation operators that were used by _Zakowski [27], Pomykala [11], Tsang [15], Zhu [37], Zhu and Wang [39] and Xu
and Zhang [20].

In [13], we investigated properties of these operators and some relationships that hold between them, and in particular
we proved a characterization of pairs of approximation operators that are at the same time dual and adjoint (i.e., for which
there exists a Galois connection). In this paper, we continue this study of covering based approximation operators, focusing
on a particular point-wise partial order relation that can be considered among them. Specifically, given two lower approx-
imation operators apr1 and apr2, and two upper approximation operators apr1 and apr2, we say that the pair ðapr1; apr1Þ is
finer than the pair ðapr2; apr2Þ if apr2ðAÞ# apr1ðAÞ and apr1ðAÞ# apr2ðAÞ for every set A in U. Clearly, the ’’is finer than’’ rela-
tion forms a partial order. Moreover, it is very useful in practice, since it helps practitioners in their choice of suitable approx-
imation operators: indeed, a pair of finer operators will allow to approximate a concept more closely from below and from
above.

In this paper, we want to establish this partial order for the most commonly used covering based approximation opera-
tors, providing an exhaustive evaluation of their pairwise comparability. The remainder of the paper is structured as follows:
in Section 2, we present preliminary concepts about classical rough sets, and review lower and upper approximation oper-
ators for covering based rough sets that have been proposed in literature. They belong to two main frameworks: the dual
framework of Yao and Yao [25], including element based, granule based and system based definitions; and the non-dual
framework of Yang and Li [21]. In Section 3, on one hand, we reduce the number of operators by proving some equivalences
between them, and on the other hand, we consider some new ones which emerge as duals of the approximation operators
considered by Yang and Li. This gives us sixteen pairs of dual and distinct approximation operators. We also list their most
important theoretical properties. Section 4 evaluates the fineness order, first for each group of operators separately, and then
for all the operators jointly. The central result of our analysis is a Hasse diagram positioning the 16 lower (resp., upper)
approximation operators according to the fineness order. We also show the orders for subsets of operators satisfying partic-
ular properties, like adjointness and being a meet/join-morphism. Section 5 presents some conclusions and outlines future
work.

2. Preliminaries

Throughout this paper, we will assume that U is a finite and non-empty set; PðUÞ represents the collection of subsets of U.

2.1. Rough sets

In Pawlak’s proposal [9] of rough sets, an approximation space is an ordered pair ðU;RÞ, where R is an equivalence relation
on U. Yao and Yao [25] consider three different, equivalent ways to define lower and upper approximation operators which
are recalled below.

If ðU;RÞ is an approximation space, for each A # U, the element basedlower and upper approximations of A by R are defined
by:
aprðAÞ ¼ fx 2 U : ½x�R # Ag ð1Þ
aprðAÞ ¼ fx 2 U : ½x�R \ A – ;g ð2Þ
where ½x�R is the equivalence class of x. On the other hand, the granule based lower and upper approximations are defined by:
aprðAÞ ¼
[
f½x�R 2 U=R : ½x�R # Ag ð3Þ

aprðAÞ ¼
[
f½x�R 2 U=R : ½x�R \ A – ;g ð4Þ
Finally, the system based approximations are obtained from the r-algebra rðU=RÞ, generated from the equivalence classes, by
adding the empty set and making it closed under set union:
aprðAÞ ¼
[
fX 2 rðU=RÞ : X # Ag ð5Þ

aprðAÞ ¼
\
fX 2 rðU=RÞ : X � Ag ð6Þ
When R is not an equivalence relation (U=R is not a partition), these definitions are no longer equivalent. This has inspired
the various proposals for covering based approximation operators in the following subsection.

2.2. Covering based rough sets

Covering based rough sets were proposed to extend the range of applications of rough set theory. The basic idea is to
replace the partition corresponding to an approximation space by a covering.
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Definition 1 [31]. Let C ¼ fKig be a family of nonempty subsets of U. C is called a covering of U if [Ki ¼ U. The ordered pair
ðU;CÞ is called a covering approximation space.

It is clear that a partition generated by an equivalence relation on U is a special case of a covering of U, so the concept of
covering is an extension of a partition.

In 1983, _Zakowski [27] was the first to propose a pair of lower and upper approximation operators in this setting. Later,
Pomykala [11], Yao [22], Couso and Dubois [2], Wybraniec-Skardowska [18], Bonikowski and Bryniarski [1], and Zhu
[31–33], among others, defined other approximation operators. In this paper, we consider the following general definition
of a lower and an upper approximation operator.

Definition 2. Let ðU;CÞ be a covering approximation space. A function apr : PðUÞ ! PðUÞ is a lower approximation if
aprðAÞ# A, for all A 2 PðUÞ. A function apr : PðUÞ ! PðUÞ is an upper approximation if A # aprðAÞ, for all A 2 PðUÞ. The set of
all pairs ðapr; aprÞ of a lower and an upper approximation operator is denoted APR.

Although the Eqs. (1)–(6) of lower and upper approximations are equivalent in Pawlak rough set theory, they are no
longer equivalent in covering based rough sets. The equivalence classes may be replaced by other types of sets, for example:
neighborhoods, minimal and maximal sets of the covering, etc. In the first three subsections below, we review element
based, granule based and system based definitions of dual pairs of covering based approximation operators, as considered
by Yao and Yao [25].

Definition 3. Given a lower (resp., upper) approximation operator apr, its dual is an upper (resp., lower) approximation
operator apr@ , defined by apr@ðAÞ ¼� aprð� AÞ, for all A 2 PðUÞ. A pair ðapr; aprÞ of a lower and an upper approximation is
called a dual pair if apr ¼ apr@ .

A second important branch of covering based approximation operators does not take into account duality; these defini-
tions are recalled in Section 2.2.4.

2.2.1. Element based definition
In rough set theory, the equivalence class of an element x 2 U can be considered as its neighborhood, but in covering

based rough sets, an element can belong to many sets of the covering C, so we need to define the neighborhood of an element
x 2 U. To this aim, we consider the sets K in C such that x 2 K.

Definition 4 [25]. If C is a covering of U, a neighborhood system for x 2 U;CðC; xÞ is defined by:
CðC; xÞ ¼ fK 2 C : x 2 Kg ð7Þ

Clearly, CðC; xÞ is a subset of C.
Definition 5 [25]. A mapping N : U ! PðUÞ is called a neighborhood operator. If x 2 NðxÞ for all x 2 U;N is called a reflexive
neighborhood operator.

Substituting the equivalence class ½x�R by the neighborhood NðxÞ in Eqs. (1) and (2), each neighborhood operator defines a
pair of approximation operators:
aprNðAÞ ¼ fx 2 U : NðxÞ# Ag ð8Þ
aprNðAÞ ¼ fx 2 U : NðxÞ \ A – ;g ð9Þ
We are interested in reflexive neighborhood operators, in this case the operators aprN and aprN satisfy (Theorem 1 in [25]):
aprNðAÞ# A # aprNðAÞ: ð10Þ
So, aprN can be seen as a lower approximation operator and aprN as an upper approximation operator. Eqs. (8) and (9) give
the element based definition in covering based rough set theory, analogously to Eqs. (1) and (2) in rough set theory. From the
definitions, it is easy to show that ðaprN; aprNÞ is a dual pair.

Next, we recall some common ways to define neighborhood operators. In a neighborhood system CðC; xÞ the minimal and
maximal sets that contain an element x 2 U are particularly important.

Definition 6 [1]. Let ðU;CÞ be a covering approximation space and x 2 U. The set
mdðC; xÞ ¼ fK 2 CðC; xÞ : ð8S 2 CðC; xÞÞðS # K ) K ¼ SÞg ð11Þ
is called the minimal description of the object x.
By analogy, the notion of maximal description was introduced by Zhu and Wang in [40].

Definition 7 [40]. Let ðU;CÞ be a covering approximation space, K 2 C. The set
MDðC; xÞ ¼ fK 2 CðC; xÞ : ð8S 2 CðC; xÞÞðS � K ) K ¼ SÞg ð12Þ
is called the maximal description of the object x.
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The sets mdðC; xÞ and MDðC; xÞ represent extreme points of the neighborhood system CðC; xÞ. For any K 2 CðC; xÞ, we can
find sets K1 2 mdðC; xÞ and K2 2 MDðC; xÞ such that K1 # K # K2. From mdðC; xÞ and MDðC; xÞ, it is possible to define the
following neighborhood operators [25]:

1. N1ðxÞ ¼ \fK : K 2 mdðC; xÞg.
2. N2ðxÞ ¼ [fK : K 2 mdðC; xÞg.
3. N3ðxÞ ¼ \fK : K 2 MDðC; xÞg.
4. N4ðxÞ ¼ [fK : K 2 MDðC; xÞg.

The set N1ðxÞ equals \mdðC; xÞ, for each x 2 U, and is called the minimal neighborhood of x. It satisfies some important
properties as is shown in the following proposition.

Proposition 1 [21]. Let C be a covering of U and K 2 C, then
a. K ¼ [x2K N1ðxÞ.
b. If y 2 N1ðxÞ then N1ðyÞ# N1ðxÞ, for x; y in U.

2.2.2. Granule based definition
The lower and upper approximation operators from a covering C are defined, according to the granule based definition

[25], by:
apr0CðAÞ ¼
[
fK 2 C : K # Ag ¼ fx 2 U : ð9K 2 CÞðx 2 K ^ K # AÞg ð13Þ

apr00CðAÞ ¼
[
fK 2 C : K \ A – ;g ¼ fx 2 U : ð9K 2 CÞðx 2 K ^ K \ A – ;Þg ð14Þ
It can be checked that apr0C and apr00C are not dual; therefore, in [25], the dual approximation operators corresponding to
Eqs. (13) and (14) were considered. They are defined by:
apr0CðAÞ ¼� apr0Cð� AÞ ¼ fx 2 U : ð8K 2 CÞðx 2 K ) K \ A – ;Þg ð15Þ

apr00CðAÞ ¼� apr00Cð� AÞ ¼ fx 2 U : ð8K 2 CÞðx 2 K ) K # AÞg ð16Þ
Apart from using C directly in the above equations, it is also possible to derive new coverings of U from C. In [25], the
following coverings are considered:

1. C1 ¼ [fmdðC; xÞ : x 2 Ug.
2. C2 ¼ [fMDðC; xÞ : x 2 Ug.
3. C3 ¼ f\ðmdðC; xÞÞ : x 2 Ug ¼ f\ðCðC; xÞÞ : x 2 Ug.
4. C4 ¼ f[ðMDðC; xÞÞ : x 2 Ug ¼ f[ðCðC; xÞÞ : x 2 Ug.

For example, the covering C1 is the collection of all sets in the minimal description of each x 2 U, while C3 is the collection
of the intersections of minimal descriptions for each x 2 U, i.e., fN1ðxÞ : x 2 Ug. Each covering defines two dual pairs of
approximation operators given by Eqs. (13), (15), (14) and (16), respectively.

Another way to derive a new covering from C is based on a reduction process. Since a partition of U consists of pairwise
disjoint sets, in a covering we can consider to eliminate sets which are intersections or unions of other sets in C.

Definition 8 [25]. Let F be a family of non-empty subsets of U. If K 2 F is the intersection of some sets in F n K , then K is said
to be intersection reducible in F, otherwise K is called intersection irreducible. If K is the union of some sets in F n K , then K is
said to be union reducible in F, otherwise K is called union irreducible.
Definition 9 [25]. Let ðU;CÞ be a covering approximation space. The set C\ of all intersection irreducible elements of C is a
covering that is called the intersection reduct of C. The set C[ of all union irreducible elements of C is a covering that is called
the union reduct of C.

Again, the coverings C\ and C[ define new lower and upper approximation operators using Eqs. (13) and (14) and their
duals in Eqs. (15) and (16).

2.2.3. System based definition
In order to generalize the system based definition in Eqs. (5) and (6), Yao and Yao considered the notion of a closure

system.
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Definition 10 [25]. A family of subsets of U is called a closure system over U if it contains U and is closed under set
intersection.

Given a closure system S, one can construct its dual system S
0, with the complements of each X in S, as follows:
S0 ¼ f� X : X 2 Sg ð17Þ
The system S0 contains ; and it is closed under set union.

Definition 11 [25]. Let C be a covering of U. The intersection closure of C, denoted by \-closureðCÞ, is the minimum subset
of PðUÞ that contains C; ; and U, and is closed under set intersection. The union closure of C, denoted by [-closureðCÞ, is the
minimum subset of PðUÞ that contains C; ; and U, and is closed under set union.

Approximation operators with respect to the system based definition are defined by using a pair of a closure system and
its respective dual system.
S\ ¼ fð\-closureðCÞÞ0;\-closureðCÞg
S[ ¼ f[-closureðCÞ; ð[-closureðCÞÞ0g

ð18Þ
The lower approximation operators for A # U are defined by:
aprS\ ðAÞ ¼
[
fX 2 ð\-closureðCÞÞ0 : X # Ag ð19Þ

aprS[ ðAÞ ¼
[
fX 2 [-closureðCÞ : X # Ag ð20Þ
Dually, the upper approximation operators for A # U are defined by:
aprS\ ðAÞ ¼
\
fX 2 \-closureðCÞ : X � Ag ð21Þ

aprS[ ðAÞ ¼
\
fX 2 ð[-closureðCÞÞ0 : X � Ag ð22Þ
Eqs. (19) and (21) define a dual pair of approximation operators: ðaprS\ ; aprS\ Þ. On the other hand, Eqs. (20) and (22)
define another dual pair of approximation operators: ðaprS[ ; aprS[ Þ.

Remark 1. Among all the dual pairs considered by Yao and Yao in [25], ðaprS\ ; aprS\ Þ stands out because it is the only one
that, when the covering C is a partition, does not obtain the same results as Pawlak’s approximation operators.
2.2.4. Non-dual framework of lower and upper approximations
A summary of seven pairs of non dual approximation operators within a covering approximation space ðU;CÞ, was pre-

sented in [16,21]. These pairs consist of seven different upper approximation operators, combined with two lower approx-
imation operators, which are recalled first. Let A 2 PðUÞ.

� LC
1 ðAÞ ¼ [fK 2 C : K # Ag.

� LC
2 ðAÞ ¼ [fN1ðxÞ : N1ðxÞ# Ag.

LC
1 is the same definition used by Yao and Yao [25] for apr0C and LC

2 is the particular case of LC
1 , when we use C3 instead of C,

so LC
2 ¼ apr0C3

.
The seven upper approximation operators are defined as follows, for A 2 PðUÞ:

� HC
1 ðAÞ ¼ LC

1 ðAÞ [ [ mdðC; xÞ : x 2 A n LC
1 ðAÞ

� �� �
.

� HC
2 ðAÞ ¼ [fK 2 C : K \ A – ;g ¼ apr00CðAÞ.

� HC
3 ðAÞ ¼ [fmdðC; xÞ : x 2 Ag.

� HC
4 ðAÞ ¼ LC

1 ðAÞ [ [fK : K \ A n LC
1 ðAÞ

� �
– ;g

� �
.

� HC
5 ðAÞ ¼ [fN1ðxÞ : x 2 Ag.

� HC
6 ðAÞ ¼ fx : N1ðxÞ \ A – ;g ¼ aprN1 ðAÞ.

� HC
7 ðAÞ ¼ [fN1ðxÞ : N1ðxÞ \ A – ;g ¼ apr00C3

ðAÞ.

HC
1 was originally proposed by _Zakowski [27], while HC

2 is due to Pomykala [11]. Tsang et al. [15] studied HC
3 , Zhu

et al. [17,39,37] defined HC
4 and HC

5 , Xu and Wang [19] introduced HC
6 , and finally Xu and Zhang HC

7 [20].
The first four upper approximations were studied in conjunction with LC

1 , while the last three were paired with LC
2 . It can

be checked that none of the thus generated pairs is dual.
Also, we adopted the notations given by Yang and Li in [21], because there is no uniform notation for them in literature.

For example, in Zhang et al. [28], TH refers to the second upper approximation operator, while in [33] FH, refers to the same
operator. Finally, note that some of the above operators also appear in Yao and Yao’s framework.
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3. Dual pairs of approximation operators and their properties

In this section, based on the operators discussed in Section 2.2, we compile a list of dual pairs of approximation operators
to be considered in our study on order relations. On one hand, this list includes the dual pairs proposed by Yao and Yao in
[25] and discussed in Sections 2.2.1, 2.2.2 and 2.2.3. As we will see below, some of them are equivalent, hence the total num-
ber of pairs can be reduced. On the other hand, we add to the list those pairs obtained by coupling HC

1 ;H
C
3 ;H

C
4 and HC

5 from
Section 2.2.4 with their respective dual lower approximations.

Some equivalences were already established in [13], and are summarized in the following proposition.

Proposition 2 [13].

a. apr0C ¼ apr0C1
¼ apr0C[ ¼ apr0S[

apr0C ¼ apr0C1
¼ apr0C[ ¼ apr0S[ .

b. apr00C ¼ apr00C2
¼ apr00C\

apr00C ¼ apr00C2
¼ apr00C\ .

c. apr0C3
¼ aprN1

apr0C3
¼ aprN1 .

This already reduces the twenty dual pairs considered by Yao and Yao to fourteen. The following propositions show two
further equivalences.

Proposition 3. C1 ¼ C[.
Proof. We will show that C1 # C[ and C[# C1.
Let us suppose that K 2 C1 and that K is union reducible, that is, K 2 mdðC; xÞ for some x 2 U and K ¼ K1 [ K2 [ . . . [ Kl

with Ki 2 C and Ki – K , for i ¼ 1; . . . ; l. We have x 2 K , therefore there exists a j 2 f1;2; . . . ; lg such that x 2 Kj � K. Hence,
K R mdðC; xÞ. This is a contradiction, so K must be union irreducible, so K 2 C[.

On the other hand, if K R C1, then for all x 2 U;K R mdðC; xÞ. In particular, let x 2 K. Since K R mdðC; xÞ, there exists
Kx

0 2 mdðC; xÞ such that x 2 Kx
0 � K. So, we have K ¼ [x2Kfxg#[x2K Kx

0 # K , so K ¼ [Kx
0, hence K is reducible and K R C[. h
Corollary 1. apr00C1
¼ apr00C[ .
Proposition 4. apr00C2
¼ aprN4 .
Proof. Let x 2 U and A 2 PðUÞ. It holds that x 2 aprN4 ðAÞ () ð8K 2 MDðC; xÞÞðK # AÞ and x 2 apr00C2
ðAÞ () ð8K 2 [fMDðC; yÞ :

y 2 UgÞðx 2 K ) K # AÞ.
Clearly, if x 2 apr00C2

ðAÞ, then x 2 aprN4 ðAÞ, so apr00C2
ðAÞ# aprN4 ðAÞ.

On the other hand, suppose x 2 aprN4 ðAÞ and x R apr00C2
ðAÞ. Let y 2 U and K 2 MDðC; yÞ such that x 2 K and K � A. Then

K R MDðC; xÞ, so there exists S 2 MDðC; xÞ such that K � S and S # A. But then K # A as well, which is a contradiction. In other
words, aprN4 ðAÞ# apr00C2

ðAÞ. h

It can be checked that no further identities hold among the approximation operators considered by Yao and Yao [25] and
those considered by Yang and Li [21]. Hence, there are sixteen groups of different dual pairs of approximations operators,
which are listed in Table 1.

As mentioned in the introduction, the main objective of this paper will be to establish a point-wise partial order for the
lower and upper approximation operators in this table, comparing them according to the fineness of their approximations. At
the same time, we can also differentiate between the approximation operators according to the theoretical properties they
satisfy. Table 2 lists five important properties, all of which hold in an approximation space in Pawlak’s sense, and points out
which of the groups in Table 1 satisfy them. The proofs of most of these properties can be reconstructed from literature, see
e.g. [13,31–35,37], taking into account that fourteen out of the sixteen dual pairs of operators can be expressed by means of
LC

1 ; L
C
2 ;H

C
i and their respective dual operators. The remaining proofs can be established by simple verification, and counterex-

amples are easy to find for the negative results. It is interesting to note that none of the currently considered groups satisfies
all properties; in particular, the properties of adjointness and idempotence are never simultaneously satisfied.

4. Partial order relation for approximation operators

In this section, we systematically investigate a point-wise partial order relation among pairs of lower and upper approx-
imation operators. This partial order is defined as follows:



Table 1
List of different dual pairs of lower and upper approximations.

Number Lower approximation Upper approximation

1 aprN1 ¼ apr0C3
¼ ðHC

6 Þ
@ ¼ LC

2
aprN1 ¼ apr0C3

¼ HC
6

2 aprN2 aprN2

3 aprN3 aprN3

4
aprN4 ¼ apr00C ¼ apr00C2

¼ apr00C\ ¼ HC
2

� �@ aprN4 ¼ apr00C ¼ apr00C2
¼ apr00C\ ¼ HC

2

5 apr0C ¼ apr0C1
¼ apr0C[ ¼ aprS[ ¼ LC

1
apr0C ¼ apr0C1

¼ apr0C[ ¼ aprS[

6 apr0C2
apr0C2

7 apr0C4
apr0C4

8 apr0C\ apr0C\
9 apr00C1

¼ apr00C[ apr00C1
¼ apr00C[

10
apr00C3

¼ HC
7

� �@ apr00C3
¼ HC

7

11 apr00C4
apr00C4

12 aprS\ aprS\

13
HC

1

� �@ HC
1

14
HC

3

� �@ HC
3

15
HC

4

� �@ HC
4

16
HC

5

� �@ HC
5
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Definition 12. Let apr1 and apr2 be two lower approximation operators, and apr1 and apr2 two upper approximation
operators. We write:
� apr1 �l apr2, if and only if apr1ðAÞ# apr2ðAÞ, for all A # U.

� apr1 �u apr2, if and only if apr1ðAÞ# apr2ðAÞ, for all A # U.

� ðapr1; apr1Þ 6 ðapr2; apr2Þ, if and only if apr1 Pl apr2 and apr1 �u apr2.

It is easy to see that �l;�u and 6 are indeed reflexive, anti-symmetric and transitive. Moreover, it is easy to verify that the
partial order 6, which may be read as ‘‘is finer than’’ forms a bounded lattice on the set APR of pairs of approximation oper-
ators, with smallest element ðapr; aprÞ where aprðAÞ ¼ aprðAÞ ¼ A, and largest element ðapr; aprÞ where aprðAÞ ¼ ; and
aprðAÞ ¼ U, for any A # U. The lattice meet operation is defined as: ðapr1; apr1Þ \ ðapr2; apr2Þ ¼ ðapr; aprÞ where
aprðAÞ ¼ apr1ðAÞ [ apr2ðAÞ and aprðAÞ ¼ apr1ðAÞ \ apr2ðAÞ, with A # U. The lattice join operation is defined dually.

Remark 2. In a natural way, it is possible to consider a second partial order on APR, by defining ðapr1; apr1Þ60ðapr2; apr2Þ if
and only if apr1 �l apr2 and apr1 �u apr. The partial order 60 forms a bounded lattice on APR, with smallest element
ðapr; aprÞ where aprðAÞ ¼ ; and aprðAÞ ¼ A, and largest element ðapr; aprÞ where aprðAÞ ¼ A and aprðAÞ ¼ U, for all A # U. The
lattice meet operation is defined as: ðapr1; apr1Þ\0ðapr2; apr2Þ ¼ ðapr; aprÞ where aprðAÞ ¼ apr1ðAÞ [ apr2ðAÞ and
aprðAÞ ¼ apr1ðAÞ [ apr2ðAÞ, with A # U. Again, the join operation is defined dually. In the context of bilattice theory [3],
6is called the knowledge order on APR and 60 is called its truth order.

For practical purposes, the partial order 6is particularly relevant, since it allows us to compare pairs of approximation
operators in terms of their suitability for data analysis. In particular, the definitions of accuracy and quality of classification
provided for Pawlak’s rough sets [10] can be generalized to covering based rough sets.
Table 2
Evaluation of properties of covering based rough sets.

Name Property Satisfied by

Adjointness aprðAÞ# B() A # aprðBÞ 4;9;10;11
Monotonicity A # B) aprðAÞ# aprðBÞ All groups, except 13 and 15

A # B) aprðAÞ# aprðBÞ
Meet/join-morphism aprðA \ BÞ ¼ aprðAÞ \ aprðBÞ 1;2;3;4;9;10;11;14;16

aprðA [ BÞ ¼ aprðAÞ [ aprðBÞ
Idempotence aprðaprðAÞÞ ¼ aprðAÞ 1;5;6;7;8;13;15;16
; and U aprðUÞ ¼ U All groups

aprð;Þ ¼ ;
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Definition 13. If ðapr; aprÞ is a pair of a lower and an upper approximation operator, the accuracy of A # U is defined as:
aapr
aprðAÞ ¼

japrðAÞj
japrðAÞj ð23Þ
On the other hand, the quality of classification of A # U, by means of apr, is defined as:
caprðAÞ ¼
japrðAÞj
jAj ð24Þ
The quality of classification of a subset A # U can be extended to a partition Y ¼ fY1; . . . ;Yng of U:
caprðYÞ ¼
X japrðYiÞj

jUj ð25Þ
caprðYÞ can be seen as the ratio of elements of U that can be classified with certainty into one of the classes of Y. Clearly, it is
desirable to have caprðYÞ as high as possible. The following proposition shows the relationship with the partial order 6.

Proposition 5. If ðapr1; apr1Þ and ðapr2; apr2Þ are two pairs of approximation operators such that ðapr1; apr1Þ 6 ðapr2; apr2Þ,
then aapr2

apr2
ðAÞ 6 aapr1

apr1
ðAÞ and capr2

ðAÞ 6 capr1
ðAÞ for all A # U.
Proof. Let A # U. If ðapr1; apr1Þ 6 ðapr2; apr2Þ then apr2ðAÞ# apr1ðAÞ and apr1ðAÞ# apr2ðAÞ. Therefore japr2ðAÞj 6 japr1ðAÞj and

japr1ðAÞj 6 japr2ðAÞj. So aapr2
apr2
ðAÞ ¼ japr2ðAÞj

japr2ðAÞj
6
japr1ðAÞj
japr1ðAÞj

¼ aapr1
apr1
ðAÞ. The inequality capr2

ðAÞ 6 capr1
ðAÞ can be established similarly. h

In the remainder of this section, we will be concerned with dual pairs of approximation operators. In this case, the fol-
lowing result can be established.

Proposition 6. Let ðapr1; apr1Þ and ðapr2; apr2Þ be two dual pairs of approximation operators. It holds that
ðapr1; apr1Þ 6 ðapr2; apr2Þ () apr1 Pl apr2 () apr2 �u apr1: ð26Þ
Proof. Direct from the definition of duality and the partial orders. h

In other words, in order to establish the partial order for dual pairs of approximation operators, it suffices to know the par-
tial order 6l for lower approximation operators, as the partial order 6u for upper approximation operators can be obtained
with the reverse partial order of its duals. From now on, to simplify the notation, we will refer to both 6l and 6u by 6.

In the following subsections, we first evaluate the order relationships that hold between elements of different groups of
approximation operators: element based, granule based and system based definitions of Yao and Yao [25], and upper approx-
imation operators of Yang and Li [21]. Afterwards, we combine these results to construct an integrated Hasse diagram for all
the operators considered in Table 1.

4.1. Partial order for element based definitions

The following propositions establish the relationship among element based approximation operators, defined in Eqs. (8)
and (9) using neighborhood operators.

Proposition 7. If N and N0 are neighborhood operators such that NðxÞ# N0ðxÞ for all x 2 U, then aprN0 6 aprN.
Proof. We will show that aprN0 ðAÞ# aprNðAÞ, for any A # U. If x 2 aprN0 ðAÞ;N0ðxÞ# A, hence NðxÞ# N0ðxÞ# A for all x 2 U, so
x 2 aprNðAÞ. h
Proposition 8. For x 2 U, it holds that N1ðxÞ# N2ðxÞ;N3ðxÞ# N4ðxÞ;N1ðxÞ# N3ðxÞ and N2ðxÞ# N4ðxÞ.
Proof. The first two inclusions follow directly from the definition of neighborhood systems. For the third one, we can see
that for each K 2 N1ðxÞ there exists K 0 2 N3ðxÞ such that K # K 0. So, \fK 2 mdðC; xÞg# \ fK 0 2 MDðC; xÞg, from which follows
N1ðxÞ# N3ðxÞ. The final inclusion can be proved similarly. h
Proposition 9.

a. aprN4 6 aprN2 6 aprN1 .
b. aprN4 6 aprN3 6 aprN1 .
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Proof. Direct from Propositions 7 and 8. h

Moreover, aprN2 and aprN3 are not comparable, as we can see in Example 1 below.

Example 1. For simplicity, we use a special notation for sets and collections, for example the set f1;2;3g will be written as
123 and the collection ff1;2;3g; f3;4gg will be written as f123; 34g. Let us consider the covering C ¼ f1;23;123;34g of
U ¼ 1234. The neighborhood system CðC; xÞ, the minimal description mdðC; xÞ, the maximal description MDðC; xÞ and the
four neighborhood operators obtained from CðC; xÞ are listed in Table 3.

From the neighborhoods in Table 3, the lower approximations of A ¼ 23 are: aprN1 ðAÞ ¼ 23; aprN2 ðAÞ ¼ 2; aprN3 ðAÞ ¼ 3 and
aprN4 ðAÞ ¼ ;. In this example, we can see that aprN2 iaprN3 and aprN3 iaprN2 , so these operators are not comparable.

Using Propositions 7 and 8 and Example 1, we can establish the partial order for the lower approximation operators in
this section; the partial order for the upper approximations follows from Proposition 6. The corresponding Hasse diagrams
are shown in Fig. 1. The order relation aprNi

6 aprNj
is represented by means of an arrow from aprNi

to aprNj
.

4.2. Partial order for granule based definitions

The granule based approximation operators definitions were presented in Eqs. (13)–(16). In this section, we will evaluate
the order relation for approximation operators related with the coverings C1;C2;C3;C4 and C\ (recall that by Proposition 2,
apr0C ¼ apr0C1

and apr00C ¼ apr00C\ , and that by Proposition 3, C[ ¼ C1). First, Propositions 10 and 11 establish a general order
relation for granule based lower approximation operators apr0.

Proposition 10. If C and C0 are coverings of U such that C # C0, then apr0C 6 apr0
C0

.

Proof. Since apr0CðAÞ ¼ [fK 2 C : K # Ag and C # C0, we have [fK 2 C : K # Ag# [ fK 2 C0 : K # Ag. Then apr0CðAÞ# apr0
C0 ðAÞ,

for all A # U and apr0C 6 apr0
C0 . h
Proposition 11. If C and C0 are coverings of U such that, for all K 2 C;K ¼
S
a2I

La for ðLaÞa2I # C0, then apr0C 6 apr0
C0 .

Proof. If x 2 apr0CðAÞ, then there exists a K0 2 C such that x 2 K0 # A. But x 2 K0 ¼
S
a2I

La # A, with ðLaÞa2I # C0. Hence x 2 La # A,
for some a in I, therefore x 2 apr0

C0 ðAÞ. h
Proposition 12. Let C be a covering of U. It holds that:
Table 3
Neighb

x

1
2
3
4

apr0C4
6 apr0C2

6 apr0C\ 6 apr0C1
6 apr0C3

:

Proof. It is easy to verify that the pairs of coverings C4 � C2, C2 � C1 and C1 � C3 satisfy the conditions of Proposition 11. For
example, for coverings C4 � C2, we have: C4 ¼ f[MDðC; xÞ : x 2 Ug and C2 ¼ [fMDðC; xÞ : x 2 Ug, clearly they satisfy the con-
ditions of Proposition 11. Hence, apr0C4

6 apr0C2
6 apr0C1

6 apr0C3
.

To see that apr0C2
6 aprC\ , we prove that C2 # C\. The result then follows from Proposition 10. If K 2 C2;K 2 MDðC; x0Þ for

some x0 2 U. If K ¼
T

i2IKi for ðKiÞi2I # C� fKg, then K # Ki for all i in I, so K R MDðC; x0Þ which is a contradiction. Hence,
K 2 C\.

Finally, we prove that apr0C\ 6 apr0C1
. First of all, it is easy to see that C\# C, so by Proposition 10, we have apr0C\ 6 apr0C.

From Proposition 2, we know that apr0C1
¼ apr0C, so apr0C\ 6 apr0C1

. h

The following proposition establishes a general order relation for granule based upper approximation operators apr00C.

Proposition 13. If C and C0 are coverings of U such that, for all K 2 C, there exists L 2 C0 such that K # L, then apr00C 6 apr00
C0

.

Proof. If x 2 apr00CðAÞ, then there exists a K0 2 C such that x 2 K0 \ A – ;. By the assumption, there exists L0 2 C0 such that
K0 # L0, so x 2 L0 and L0 \ A – ;. Hence, x 2 apr00

C0 ðAÞ. h
orhood systems, minimal and maximal descriptions, and neighborhood operators for Example 1.

CðC; xÞ mdðC; xÞ MDðC; xÞ N1ðxÞ N2ðxÞ N3ðxÞ N4ðxÞ

{1,123} {1} {123} 1 1 123 123
{23,123} {23} {123} 23 23 123 123
{23,123,34} {23,34} {123,34} 3 234 3 1234
{34} {34} {34} 4 34 4 34
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Fig. 1. Partial order for element based approximation operators.
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Proposition 14. Let C be a covering of U. It holds that:
apr00C3
6 apr00C1

6 apr00C2
¼ apr00C\ 6 apr00C4

:

Proof. Clearly, \mdðC; xÞ# K for each K 2 mdðC; xÞ and for all K 2 mdðC; xÞ there exists L 2 MDðC; xÞ such that K # L and
finally for all L 2 MDðC; xÞ we have L # MDðC; xÞ. Therefore, the result follows as a consequence of Propositions 2 and 13. h

Next, we will relate the lower approximation operators apr0 and apr00. First, the following proposition follows easily from
the definitions of granule based approximation operators.

Proposition 15. Let C be a covering of U. It holds that apr00C 6 apr0C.
Proof. Direct from Eqs. (13) and (16). h

Apart from this, we also have the following result.

Proposition 16. apr00C2
6 apr0C4

.

Proof. Let x 2 apr00C2
ðAÞ. Clearly, for all K 2 MDðC; xÞ, it holds that x 2 K. Therefore, K # A for all K 2 MDðC; xÞ. From this fol-

lows that [MDðC; xÞ# A and since [MDðC; xÞ 2 C4, therefore x 2 apr0C4
ðAÞ. h

The remaining covering based lower approximation operators are not comparable, as the following examples show.

Example 2. For the covering C ¼ f1;3;13;24;34;14;234g of U ¼ 1234, we have:

1. C1 ¼ f1;3;24;14;34g.
2. C2 ¼ f13;14;234g.
3. C3 ¼ f1;24;3;4g.
4. C4 ¼ f134;234;1234g.
5. C\ ¼ f13;24;34;14;234g.

The lower approximations of all non-empty subsets of U are shown in Table 4. From these results, we can conclude that
the pairs apr00C1

� apr0C4
, apr00C1

� apr0C2
, apr00C3

� apr0C2
, apr00C3

� apr0C4
and apr00C3

� apr0C\ are not comparable. This example does
not allow us to conclude anything about the incomparability of apr00C3

� apr0C1
, neither about apr00C1

� apr0C\ .
Example 3. For the covering C ¼ f1;12;123;24;23;234g of U ¼ 1234, we have that C1 ¼ f1;12;23;24g and
C\ ¼ f1;12;123;24;234g. We can see that: apr0C\ ð12Þ ¼ 12 	 1 ¼ apr00C1

ð12Þ, while apr0C\ ð23Þ ¼ ; � 3 ¼ apr00C1
ð23Þ. Therefore,

apr0C\ and apr00C1
are not comparable.
Example 4. For the covering C ¼ f13;14;23;24;34;234g of U ¼ 1234, we have that C1 ¼ f13;14;23;24;34g;C3 ¼
f1;2;3;4g. We can see that: apr0C1

ð12Þ ¼ ; � 12 ¼ apr00C3
ð12Þ. On the other hand, in Example 2, we have

apr0C1
ð14Þ ¼ 14 	 1 ¼ apr00C3

ð14Þ. Therefore, apr00C3
and apr0C1

are not comparable.
Order relations for upper approximation operators apr0C and apr00C can be established as a consequence of duality.
To conclude this subsection, the partial order relations for granule based approximation operators are shown in Fig. 2.

4.3. Partial order for system based definitions

The following example shows that the two system-based lower approximation operators defined in Eqs. (19) and (20) are
not comparable. By duality, therefore, the corresponding upper approximations are not comparable, either.
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Example 5. Consider the covering C ¼ f2;12;23;14;124g. The corresponding S\ and S[ can be obtained from the following
closure systems and their duals.

� \-closure ¼ f;;U;2;12;23;14;124;1g.
� [-closure ¼ f;;U;2;12;23;14;124;123g.

The lower approximations of all non-empty subsets of U are shown in Table 5. From these values, we can see that aprS\
and aprS[ are not comparable.

4.4. Partial order for the operators from the non-dual framework

First, we note that order relations among the first six upper approximation operators HC
1 � HC

6 have already been estab-
lished in [16].

Proposition 17 [16].

a. HC
1 6 HC

4 6 HC
2 .

b. HC
1 6 HC

3 6 HC
2 .

c. HC
5 6 HC

1 .
d. HC

6 6 HC
2 .

In this section, we complete the partial order for this framework, considering also HC
7 , by means of the following propo-

sitions and example.

Proposition 18. HC
6 6 HC

7 .
Proof. Direct from their definitions. h
Proposition 19. HC
7 6 HC

2 .
Proof. If x 2 HC
7 ðAÞ then x 2 N1ðwÞ for some w 2 U and N1ðwÞ \ A – ;. But N1ðwÞ# K 2 C for some K, therefore x 2 HC

2 ðAÞ. h
Proposition 20. HC
5 6 HC

7 .
Proof. If x 2 HC
5 ðAÞ then x 2 N1ðwÞ for some w 2 A. Since w 2 N1ðwÞ;N1ðwÞ \ A – ; and x 2 HC

7 ðAÞ. h
Example 6. Let us consider the covering C ¼ f1;12;34;123g of U ¼ 1234. The upper approximations HC
i ðAÞ of all non-empty

subsets A of U are shown in Table 6. From these results, we can see that the pairs HC
7 � HC

1 , HC
7 � HC

3 and HC
7 � HC

4 are not
comparable.

To summarize, the order relations for the upper approximation operators HC
i are shown in Fig. 3. Again, by Proposition 6,

we can consider the reverse ordering for the lower approximation operators HC
i

� �@
.

Table 4
Granule based lower approximations for Example 2.

A apr0C1
apr0C2

apr0C3
apr0C4

apr0C\ apr00C1
apr00C2

apr00C3
apr00C4

1 1 ; 1 ; ; ; ; 1 ;
2 ; ; ; ; ; ; ; ; ;
3 3 ; 3 ; ; ; ; 3 ;
4 ; ; 4 ; ; ; ; ; ;

12 1 ; 1 ; ; ; ; 1 ;
13 13 13 13 ; 13 ; ; 13 ;
14 14 14 14 ; 14 1 ; 1 ;
23 3 ; 3 ; ; ; ; 3 ;
24 24 ; 24 ; 24 2 ; 24 ;
34 34 ; 34 ; 34 3 ; 3 ;

123 13 13 13 ; 13 ; ; 13 ;
124 124 14 124 ; 124 12 ; 124 ;
134 134 134 134 134 134 13 1 13 ;
234 234 234 234 234 234 23 2 234 ;

1234 1234 1234 1234 1234 1234 1234 1234 1234 1234
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Fig. 2. Partial order for granule based approximation operators.

Table 5
System based lower approximations for Example 5.

A aprS[ aprS\

1 ; ;
2 ; 2
3 3 ;
4 ; ;

12 ; 12
13 3 ;
14 14 14
23 23 23
24 ; 2
34 34 ;

123 23 123
124 14 124
134 134 14
234 234 23

1234 1234 1234
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4.5. Partial order for all approximation operators

To establish the partial order relation among all lower approximation operators considered in Table 1, we first prove the
following proposition which relates operators in different groups.

Proposition 21.

a. apr0C2
6 aprN3 .

b. aprN4 6 apr0C4
.

c. aprN4 6 apr0C2
.

d. aprN2 6 apr0C1
.

e. apr00C1
6 HC

3 .
f. apr00C1

6 aprN2 .

g. aprS\ 6 ðH
C
5 Þ

@
.

Proof.

a. if x 2 apr0C2
ðAÞ; x 2 K for some K 2 C2, and K # A. N3ðxÞ ¼ \MDðC; xÞ# K # A, hence x 2 aprN3 ðAÞ.

b. If x 2 aprN4 ðAÞ;N4ðxÞ# A. But N4ðxÞ 2 C4, and x 2 N4ðxÞ, hence x 2 apr0C4
ðAÞ.

c. If x 2 aprN4 ðAÞ;N4ðxÞ# A. Therefore, for all K 2 C2 with x 2 K , we have K # [MDðC; xÞ ¼ N4ðxÞ# A, hence x 2 apr0C2
ðAÞ.

d. If x 2 aprN2 ðAÞ;N2ðxÞ ¼ [mdðC; xÞ# A. Therefore, for all K 2 C1 with x 2 K , we have K # [mdðC; xÞ ¼ N2ðxÞ# A, hence
x 2 apr0C1

ðAÞ.
e. Remark that, for A 2 PðUÞ; apr00C1

ðAÞ ¼ fx 2 U : 8K 2 fmdðC; yÞ : y 2 Ugðx 2 K ) K # AÞg. If x 2 apr00C1
ðAÞ, then x 2 A.

Since x 2 K for all K in mdðC; xÞ, it holds that x 2 HC
3 ðAÞ.



Table 6
Upper approximations HC

i ðAÞ for Example 6.

A HC
1 HC

2 HC
3 HC

4 HC
5 HC

6 HC
7

1 1 123 1 1 1 12 12
2 12 123 12 123 12 2 12
3 1234 1234 1234 1234 3 34 34
4 34 34 34 34 34 4 34

12 12 123 12 12 12 12 12
13 1234 1234 1234 1234 13 1234 1234
14 134 1234 134 134 134 124 1234
23 1234 1234 1234 1234 123 234 1234
24 1234 1234 1234 1234 1234 24 1234
34 34 1234 1234 34 34 34 34

123 123 1234 1234 123 123 1234 1234
124 1234 1234 1234 1234 1234 124 1234
134 134 1234 1234 134 134 1234 1234
234 1234 1234 1234 1234 1234 234 1234

1234 1234 1234 1234 1234 1234 1234 1234
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Fig. 3. Partial order relation for lower and upper approximations of the non-dual framework.
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f. We will show that aprN2 6 apr00C1
. If x 2 aprN2 ðAÞ, then N2ðxÞ \ A – ;, but N2ðxÞ ¼ [fK : K 2 mdðC; xÞg, so

[fK : K 2 mdðC; xÞg \ A ¼ [fK \ A : K 2 mdðC; xÞg – ;. Thus there exists K0 2 mdðC; xÞ such that K0 \ A – ;. Therefore
x 2 [fK 2 C1 : K \ A – ;g ¼ apr00C1

ðAÞ and so, aprN2 6 apr00C1
. The result [f.] is a consequence of duality.

g. We will see that HC
5 6 aprS\ . For this, let us suppose w 2 HC

5 ðAÞ, then w 2 N1ðxÞ for some x 2 A. From Proposition 1.a, we
have N1ðwÞ# N1ðxÞ. We will show that w 2 X, for all X 2 (\-closure (CÞÞ with X � A. Let X be a set in (\-closure (CÞÞ
with X � A, then x 2 A # X and X ¼ K1 \ . . . \ Kl with Kj 2 C. So x 2 Kj for all j ¼ 1;2;3; . . . ; l. Again, from Proposition
1.b, each Kj can be expressed as Kj ¼ [xj2Kj

N1ðxjÞ, therefore x 2 N1ðxj0 Þ, for some xj0 2 Kj and N1ðxÞ# Kj for all
j ¼ 1;2;3; . . . ; l. Thus we have w 2 N1ðwÞ# N1ðxÞ# X. This shows that w 2 aprS\ and that HC

5 ðAÞ 6 aprS\ ðAÞ. h

Next, the following examples show that the operator aprS\ is not comparable with any of the other ones. This is partially a
consequence of the fact that when C is a partition, aprS\ does not coincide with Pawlak’s lower approximation operator.

Example 7. Since the covering C ¼ f1;2;3;4g of U ¼ 1234 is a partition, we have that aprðAÞ ¼ A, for all A # U with apr any
of the lower approximation operators in Table 1 different from aprS\ . On the other hand, \-closure ðCÞ ¼ f;;1234;1;2;3;4g
and ð\-closure Cð ÞÞ0 ¼ f;;1234;234;134;124;123g, so aprS\ ðAÞ ¼ ;, if jAj < 3 and aprS\ ðAÞ ¼ A, if jAjP 3. Then apriaprS\ .
Example 8. Consider the covering C ¼ f1;12;123;24;23;234g of U ¼ 1234 in Example 3.
The lower approximations of all non-empty subsets of U for the approximation operators aprS\ ; aprN1 and ðHC

1 Þ
@

are shown

in Table 7. From these values, we can see that aprS\ is comparable with neither aprN1 nor ðHC
1 Þ

@
.

From Examples 7 and 8, and the Fig. 4 below, we can see that the operator aprS\ is not comparable with any of the other

ones, different from ðHC
5 Þ

@
.

An integrated Hasse diagram of the partial order relation among the different lower approximation operators can be seen
in Fig. 4. A completely analogous diagram can be constructed for the upper approximation operators. We represent each
group of operators in Table 1 with a circled number. The green circles represent operators which form an adjoint pair, with
their dual; the yellow circles represent meet morphisms which do not form an adjoint pair with their dual; and the red
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Fig. 4. Partial order relation for groups of lower approximation operators in Table 1.

Table 7
System based lower approximations for Example 8.

A aprS\ aprN1 HC
1

� �@

1 1 1 1
2 ; 2 ;
3 ; ; 3
4 4 ; 4

12 1 12 1
13 13 1 13
14 14 1 14
23 ; 23 3
24 4 24 4
34 34 ; 34

123 13 123 13
124 14 124 14
134 134 1 ;
234 234 234 234

1234 1234 1234 1234

Table 8
Minimal descriptions, and neighborhood operator N2 for the coverings C2 and C\ .

x mdðC2; xÞ mdðC\; xÞ NC2
2 ðxÞ NC\

2 ðxÞ

1 {13,14} {13,14} 134 134
2 {234} {24} 234 24
3 {13,234} {13,34} 1234 134
4 {14,234} {14,24,34} 1234 1234
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circles represent operators which do not form an adjoint pair with their dual, neither are meet morphisms. The label P:n is
the number of proposition where the order relation is established.

We can see that there are two top elements: the group ð16Þ, represented by ðHC
5 Þ

@
and the group ð1Þ, represented by aprN1 .

The unique bottom element is the group ð11Þ represented by apr00C4
. Recall that the top elements represent those lower

approximation operators for which the quality of classification (24) is highest.
It is interesting to note that while both top elements of the partial order are meet-morphisms, they do not form an adjoint

pair with their duals. This can be seen as a disadvantage of these operators, because the adjointness property guarantees for a
dual pair ðapr; aprÞ that the fix points of apr and apr coincide, in other words, aprðAÞ ¼ A iff aprðAÞ ¼ A.

If we consider only the subset of lower approximation operators that satisfy adjointness, we can see that they form a
chain, with group (10), represented by apr00C3

as the top element.
Finally, the Hasse diagram also suggests some additional approximation operators to be considered. For example, the

order relation between the groups (10)–(1), (9)–(5), (4)–(8), (4)–(6) and (11)–(7) corresponds to the relation: apr0C 6 apr00C.
The group (2) is between (9) and (5) and it is defined from aprN2 . If we consider the neighborhood operators
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NC
2 ðxÞ ¼ [fK : K 2 mdðC; xÞg for different coverings, we obtain new lower approximation operators: apr

N
C1
2
; apr

N
C2
2
;

apr
N

C3
2
; apr

N
C4
2

and aprNC\
2

. Following the proof in Proposition 21d and f, order relations with the new operators can easily

be established:

1. apr00C3
6 apr

N
C3
2
6 apr0C3

.
2. apr00C1

6 apr
N

C1
2
6 apr0C1

.
3. apr00C2

6 aprNC\
2
6 apr0C\ .

4. apr00C2
6 apr

N
C2
2
6 apr0C2

.
5. apr00C4

6 apr
N

C4
2
6 apr0C4

.

Example 9 below shows that some of these new approximations operators are different. In particular we will see that
apr00C2

– aprNC\
2

– apr0C\ . Similar results can be established for other coverings.

Example 9. From the covering C in Example 2, we have: C2 ¼ f13;14;234g and C\ ¼ f13;24;34;14;234g. The minimal
description mdðC; xÞ for these coverings and the neighborhood operators NC

2 , are shown in Table 8.

From the neighborhoods in Table 8, the lower approximations of A ¼ 24 are: apr
N

C2
2
ðAÞ ¼ ; and aprNC\

2
ðAÞ ¼ 2, so

apr
N

C2
2

– aprNC\
2

. Also, we can see that apr00C2
ðAÞ ¼ ;; aprNC\

2
ðAÞ ¼ 2 and apr0C\ ðAÞ ¼ 24, therefore apr00C2

– aprNC\
2

– apr0C\ .

In general, additional approximation operators can be defined combining the different coverings with the neighborhood
based lower approximation operators as well as with ðHC

i Þ
@

(i ¼ 1; . . . ;7). All of them may be included in the Hasse diagram in
Fig. 4, but in order not to complicate the visual representation of the partial order, we refrain from doing so here.

5. Conclusions

In this paper, we have studied the order relation between lower and upper approximation operators proposed in the lit-
erature for covering-based rough sets. Among the sixteen dual pairs that we have considered in our study, we have identified

HC
5

� �@
;HC

5

� �
and ðaprN1 ; aprN1 Þ ¼ apr0C3

; apr0C3

� �
as the ones that produce the finest approximations. If additionally adjoint-

ness is required, then the finest pair is apr00C3
; apr00C3

� �
. These results may guide practitioners who are faced with an ample

collection of approximation operators to choose from.
As part of our future work, we would like to obtain further characterizations of covering-based approximation operators.

In particular, an interesting question is whether there exist dual pairs of approximation operators that are both idempotent
and adjoint. Also, we plan to study different order relations among pairs of approximation operators, for example the exten-
sion of the entropy based order relation defined by Zhu and Wen in [30].
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