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In this paper, we discuss the relationship between different types of reduction and 
set definability. We recall the definition of a decision reduct, a γ -decision reduct, a 
decision bireduct and a γ -decision bireduct in a Pawlak approximation space and the 
notion of set definability both in a Pawlak and a covering approximation space. We 
extend the notion of discernibility between objects in a Pawlak approximation space 
to a covering approximation space. Moreover, we introduce the definition of a decision 
reduct, a γ -decision reduct, a decision bireduct and a γ -decision bireduct in a covering 
approximation space. In addition, we study interrelationships between the four types of 
reduction, the correspondence with positive regions and the relationship to set definability 
in Pawlak and covering approximation spaces.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Rough set theory was developed by Pawlak [14] as a tool to analyze and reason about data. An important application of 
rough set theory in knowledge discovery is attribute subset selection [12]. There are different algorithms based on rough set 
theory which search for so-called decision reducts: irreducible sets of conditional attributes that satisfy predefined criteria 
for keeping enough information about decisions [18]. As the original definition of a reduct is quite restrictive, approaches 
concerning approximate reducts have been introduced (see e.g. [17]). Unfortunately, the current approximate reduct criteria 
are not optimal for the building of classifier ensembles and therefore, Ślȩzak and Janusz [18] introduced the notion of 
decision bireducts inspired by the methodology of biclustering [13]. In this approach, both a subset of conditional attributes 
which describes the decision classes and a subset of objects of the universe for which such a description is valid are selected. 
In [19–21], Stawicki et al. discussed the differences and relationships between approximate reducts and decision bireducts. 
Moreover, they introduced the notions of a γ -decision reducts and bireducts, which correspond to the well-known notion 
of positive region in rough set decision systems.

The above notions of (γ -)decision reducts and bireducts are defined for Pawlak’s rough set model. For each set of 
attributes, a corresponding equivalence relation can be constructed on the universe of discourse and thus, the universe 
can be partitioned. Such an equivalence relation describes whether two objects can be discerned given the information 
provided by the considered attributes. However, defining a partition is not always possible (see e.g. [7,8,10,11]). Instead, 
a covering of the universe related with a set of conditional attributes is constructed. Before extending the three types of 
reduction to covering approximation spaces, we first extend the notion of discernibility to covering approximation spaces. 

* Corresponding author.
E-mail address: Chris.Cornelis@UGent.be (C. Cornelis).
https://doi.org/10.1016/j.ijar.2019.03.007
0888-613X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2019.03.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:Chris.Cornelis@UGent.be
https://doi.org/10.1016/j.ijar.2019.03.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2019.03.007&domain=pdf


L. D’eer, C. Cornelis / International Journal of Approximate Reasoning 109 (2019) 42–54 43
The indiscernibility class of an object will no longer be given by its equivalence class, but by its neighborhood [3]. Note 
that the neighborhood of an object is no longer necessarily symmetric, i.e., it is possible that an object x of the universe is 
discernible from an object y of the universe, but that y is not discernible from x.

The extension to covering approximation spaces is done in a semantically sound way. In [23], Yao argued that there are 
two sides of rough set theory: a computational and a conceptual or semantical one. The former focuses on how to compute 
concepts and on the construction of algorithms, while the latter studies how to define such concepts and provides insight 
in the concepts. In a semantical rough set approach, elementary and definable sets are defined. An elementary set is a set 
of objects which is directly related with the data and is constructed in a meaningful way. A definable set can be described 
by a union of elementary sets and can therefore be interpreted from the available knowledge given in the data. If a subset 
of objects is not definable, it can be approximated by definable sets [6].

In this article, we first investigate the connection between (γ -)decision reducts and bireducts, and set definability in 
Pawlak approximation spaces. In addition, we extend the notion of discernibility to covering approximation spaces. From 
this, we define decision reducts, γ -decision reducts, bireducts and γ -bireducts in a covering approximation space. Further-
more, we study which properties are maintained in the more general framework.

The remainder of this article is structured as follows. In Section 2, we discuss set definability in Pawlak and covering 
approximation spaces and the different types of reduction for Pawlak’s rough set model. We recall the connection between 
a γ -decision bireduct and the positive region in a Pawlak approximation space. In Section 3, we study decision reducts, 
γ -decision reducts, bireducts and γ -decision bireducts and their connection with set definability in a Pawlak approximation 
space. The notion of discernibility and the four types of reduction are extended to covering approximation spaces in Section 
4. Moreover, we study which properties of Section 2 and Section 3 are maintained. Section 5 presents a worked example to 
illustrate the practical meaning of the introduced concepts. To end, conclusions and future work are stated in Section 6.

2. Preliminaries

In this section, we discuss definability in Pawlak and covering approximation spaces. In addition, we recall the definitions 
of a decision reduct, a γ -decision reduct, a decision bireduct and a γ -decision bireduct for Pawlak’s rough set model. All 
these notions rely on the concept of a decision system.

Definition 1. [15] A decision system A is a tuple A = (U , C ∪{d}), where U is a non-empty set of objects called the universe 
of discourse, C is a non-empty set of conditional attributes and d /∈ C is the decision attribute. For every attribute a ∈ C ∪{d}
there is a non-empty set of attribute values Va and a complete information function Ia : U → Va .

2.1. Definable sets in Pawlak and covering approximation spaces

An important topic in rough set theory is the granulation of the universe of discourse given the information provided in 
the data. Each granule is a subset of the universe U and represents a basic piece of knowledge [15,22]. In Pawlak’s original 
rough set model, the family of granules is represented by a partition of the universe [14]: given a decision system A and a 
set of conditional attributes B ⊆ C , the equivalence relation E B , also called the B-indiscernibility relation, is constructed as 
follows:

∀x, y ∈ U : (x, y) ∈ E B ⇔ ∀a ∈ B : Ia(x) = Ia(y).

The tuple (U , E B) is called a Pawlak approximation space. The equivalence class of x ∈ U , denoted by [x]E B , consists of the 
objects which have the same attribute values for all the attributes in B . Hence, if y ∈ [x]E B , x and y are not discernible by 
the attributes of B . Therefore, the partition U/E B = {[x]E B | x ∈ U } can be seen as the family of basic granules given the set 
B , and each equivalence class [x]E B is called an elementary set in (U , E B) [5]. Moreover, the union of equivalence classes is 
called a definable set in (U , E B), since such a set can be constructed and interpreted from the available knowledge given the 
set of attributes B [5]. By closing the partition U/E B under set union, the family of definable sets is obtained:

B(U/E B) =
{⋃

F | F ⊆ U/E B

}
.

As U/E B is a partition, B(U/E B) is closed under set union, set intersection and set complement. Therefore, the family of 
definable sets in the Pawlak approximation space (U , E B ) is represented by the Boolean algebra B(U/E B ).

The definable sets can be used to approximate any X ⊆ U through the associated lower and upper approximation oper-
ators:

apr
E B

(X) = {x ∈ U | [x]E B ⊆ X}, aprE B
(X) = {x ∈ U | [x]E B ∩ X 
= ∅}

It holds that apr
E B

(X) is the maximal definable set contained by X , and aprE B
(X) is the minimal definable set containing 

X . [24]
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Unfortunately, constructing an equivalence relation given a set of conditional attributes is not always possible or useful. 
For example, when there are missing values in the decision system [9–11], or when many equivalence classes only consist 
of one object [7,8]. When the discernibility relation is not represented by an equivalence relation, but e.g., by a tolerance or 
dominance relation, the family of basic granules is given by a covering of U instead of a partition.

Definition 2. [25] Given a universe U and an index set I , the collection C = {Ki ⊆ U | Ki 
= ∅, i ∈ I} is called a covering of U
if 

⋃
i∈I

Ki = U .

The construction of a covering related to one conditional attribute a ∈ C should be done from a semantical point of view 
[5]. For example, the foresets of a dominance relation [7,8] or a tolerance relation [10,11] can be used to construct the 
covering Ca: Ca = {Rx | x ∈ U } with R a meaningful binary relation related to the attribute values of a and Rx defined as 
follows: for y ∈ U , y ∈ Rx if and only if (y, x) ∈ R . For a set of conditional attributes B ⊆ C , the covering CB is defined as 
follows:

CB =
{⋂

a∈B

Ka |
⋂
a∈B

Ka 
= ∅, Ka ∈Ca,∀a ∈ B

}
,

i.e., CB is the set of non-empty intersections of elements from the coverings Ca , a ∈ B [5]. By convention, we define C∅ =
{U }: when no attributes are considered, all objects are related to each other.

For B ⊆ C , the tuple (U , CB) is called a covering approximation space. The basic granules are now given by the sets 
in the covering CB , called patches. Every patch K ∈ CB is therefore called an elementary set in (U , CB). Similarly as in 
Pawlak’s rough set model, the family of definable sets in (U , CB) is constructed by closing the covering CB under set union 
[5]:

∪∗(CB) =
{⋃

F | F ⊆ CB

}
.

The set ∪∗(CB) is called the union-closure of CB and is closed under set union. However, as CB is no longer a parti-
tion, ∪∗(CB) is not closed under set intersection and set complement. We conclude that the family of definable sets in the 
covering approximation space (U , CB) is given by the union-closure ∪∗(CB).

Just as in Pawlak’s framework, approximation operators can be used to approximate any set X ∈ U by means of elements 
of ∪∗(CB). Computational approaches to covering-based rough sets take various strategies to define suitable approximation 
operators starting from the covering CB . In this paper, we focus on the tight lower approximation [25,26] and its dual upper 
approximation:

apr′
CB

(X) =
⋃

{K ∈CB | K ⊆ X},apr′CB
(X) = co(apr′

CB
(coX))

where co represents set-theoretic complement. The tight lower approximation operator appears to be the most interesting 
from conceptual point of view, as it is the unique maximal definable set contained by X , just like in Pawlak’s rough set 
model. On the other hand, there is no unique minimal definable set containing X as opposed to Pawlak’s model [6,24].

2.2. Decision reducts, γ -decision reducts, bireducts and γ -decision bireducts in a Pawlak approximation space

The concept of a decision reduct is a very important contribution of rough set theory. A key notion in determining 
a decision reduct is the notion of discernibility. In a Pawlak approximation space (U , E B ) with B ⊆ C , it is said that the 
objects x, y ∈ U are discernible if [x]E B 
= [y]E B . This means that there is at least one attribute a in B such that Ia(x) 
= Ia(y).

Decision reducts are normally considered only for consistent decision systems. A decision system A is inconsistent if there 
exist objects x, y ∈ U with different decision values, i.e., Id(x) 
= Id(y), which are not discernible in the Pawlak approximation 
space (U , EC ), i.e., Ia(x) = Ia(y) for each a ∈ C . If this is not the case, then A is called consistent.

Definition 3. [15,20] Given the consistent decision system A = (U , C ∪ {d}), the set of conditional attributes B ⊆ C is called 
a decision reduct for A if and only if each pair x, y ∈ U satisfying the inequality Id(x) 
= Id(y) is discerned in (U , E B ), and if 
B is irreducible, i.e., there is no smaller subset B ′ � B which satisfies this property. We denote the set of decision reducts 
by Red.

Note that B = ∅ is not excluded in the definition of a decision reduct. However, B = ∅ is only a decision reduct if all 
objects have the same decision, since U/E B = {U } when B = ∅.

In literature, more general definitions of decision reducts that apply also to inconsistent decision systems are sometimes 
used, based on the notion of the positive region. Let A be a decision system and B ⊆ C , the B-positive region Pos(B) in 
Pawlak’s rough set model is defined as the set of objects for which the values of B predict the decision class unequivocally:
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Pos(B) =
⋃

[x]Ed
∈U/Ed

apr
E B

([x]Ed ) =
⋃

[x]Ed
∈U/Ed

{y ∈ U | [y]E B ⊆ [x]Ed } = {x ∈ U | [x]E B ⊆ [x]Ed },

where Ed is the equivalence relation associated with the decision attribute d:

∀x, y ∈ U : (x, y) ∈ Ed ⇔ Id(x) = Id(y).

Definition 4. [20] Given the decision system A = (U , C ∪ {d}), the set of conditional attributes B ⊆ C is called a γ -decision 
reduct for A if and only if Pos(B) = Pos(C), and if it is irreducible, i.e., there is no smaller subset B ′ � B which satisfies this 
property. We denote the set of γ -decision reducts by Redγ .

For consistent decision systems, the notions of decision reduct and γ -decision reduct coincide, while for an inconsistent 
decision system A, Stawicki et al. [20] discussed a procedure to transform A into a consistent decision system, such that 
its decision reducts are exactly the γ -decision reducts of the original decision system.

From the definition of a (γ -)decision reduct it is clear that it is obtained by selecting conditional attributes given pre-
defined criteria, in order to keep enough information to make decisions [18]. Throughout this process, the set of objects U
remains fixed. On the other hand, a decision bireduct also takes object selection into consideration, also commonly referred 
to as instance selection. Hence, both a set of attributes and a set of objects is selected. The former describes the decision 
classes and the latter contains the objects for which such a description is valid. Ślȩzak and Janusz introduced the concept 
of decision bireducts for Pawlak’s rough set model inspired by the methodology of biclustering [13].

Definition 5. [18] Let A be a decision system. A pair (B, X) with B ⊆ C and X ⊆ U is called a decision bireduct if and only if 
all pairs x, y ∈ X with Id(x) 
= Id(y) are discerned in the Pawlak approximation space (U , E B ) and the following properties 
hold:

1. There is no B ′ � B such that all pairs x, y ∈ X with Id(x) 
= Id(y) are discerned in (U , E B ′ ),
2. There is no X ′ � X such that all pairs x, y ∈ X ′ with Id(x) 
= Id(y) are discerned in (U , E B ).

For B ⊆ C , we denote XB = {X ⊆ U | (B, X) decision bireduct}.

Hence, to obtain a decision bireduct (B, X) we select both conditional attributes and objects of the universe such that 
B is minimal for X and X is maximal for B . Note that the same set B ⊆ C can occur as a component of many decision 
bireducts with different sets of objects and similarly, the set X ⊆ U can occur as a component of many decision bireducts 
with different sets of conditional attributes. Note that for B ⊆ C and X = ∅, (B, X) can never be a decision bireduct, as we 
can always extend X with any object x ∈ U .

An interesting question arises whether there is an optimal bireduct with the component B . An implicit assumption is that 
a decision bireduct (B, X) minimizes the set of conditional attributes as well as the set of outliers U \ X [21]. The smaller 
the size of the set of outliers, the more general the description of the decision system. However, in case of imbalanced data 
sets, i.e., when there is a large disproportion between the different decision classes, the simplest form of measuring the 
size based on the cardinality of the object subsets may be insufficient. For example, assume there is one very large decision 
class [x]Ed and a couple of small decision classes {[y1]Ed , [y2]Ed , . . . , [yn]Ed }. For B ⊆ C and X ∈XB , it is preferable that X
does not only contain elements from the large decision class [x]Ed , but also contains elements from the minority decision 
classes [yi]Ed . In such cases one should pay more attention to a specified subset of objects, for instance, objects belonging 
to the minority classes. With this in mind, Stawicki and Widz introduced the concept of a γ -decision bireduct for Pawlak’s 
rough set model, where an object belongs to the component X if it can be discerned in the context of the whole universe 
U .

Definition 6. [21] Let A be a decision system. A pair (B, X) with B ⊆ C and X ⊆ U is called a γ -decision bireduct if and 
only if all pairs x ∈ X, y ∈ U with Id(x) 
= Id(y) are discerned in the Pawlak approximation space (U , E B ) and the following 
properties hold:

1. There is no B ′ � B such that all pairs x ∈ X, y ∈ U with Id(x) 
= Id(y) are discerned in (U , E B ′ ),
2. There is no X ′ � X such that all pairs x ∈ X ′, y ∈ U with Id(x) 
= Id(y) are discerned in (U , E B).

For B ⊆ C , we denote Xγ
B = {X ⊆ U | (B, X) γ -decision bireduct}.

Note that for B ⊆ C it is possible that Xγ
B = {∅}, i.e., the empty set is the only subset of U which forms a γ -decision 

bireduct with the given set of attributes B . In comparison, Xγ
B = ∅ means that B cannot operate as a component of a 

γ -decision bireduct, as it is not minimal.
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Table 1
Decision system A from 
Example 1.

a1 a2 d

x 1 1 0
y 1 1 1
z 0 1 1

Table 2
Decision system A from 
Example 2.

a1 a2 d

x 1 0 0
y 1 1 1
z 0 1 1

In [21] it is stated that a set X ∈ Xγ
B is closely related with the positive region of B: an object can be added to X if it 

belongs to the positive region defined by B [21]. More formally, Stawicki et al. proved that Pos(B) is the only possible set 
in Xγ

B :

Theorem 1. [20] Let A be a decision system and B ⊆ C. Xγ
B 
= ∅ if and only if Xγ

B = {Pos(B)} and {Pos(B ′)} 
= {Pos(B)} for all B ′ ⊂ B.

Hence, given B ⊆ C , there is at most one γ -decision bireduct associated with B , namely (B, Pos(B)).
To end this section, we point out the following remark. If the decision system A is inconsistent, then there is no decision 

reduct according to Definition 4. However, it is possible to determine subsets B, B ′ ⊆ C and subsets X ⊆ U such that (B, X)

is a decision bireduct according to Definition 5 and (B ′, Pos(B ′)) is a γ -decision bireduct according to Definition 6. We 
illustrate this in the following example:

Example 1. Let A be the decision system with U = {x, y, z} and C = {a1, a2} presented in Table 1. The system A is incon-
sistent due to the objects x and y. Therefore, Red = ∅. However, we have the following decision bireducts and γ -decision 
bireducts:

X∅ = ∅ X
γ
∅ = ∅

X{a1} = {{x, z}, {y, z}} X
γ
{a1} = {{z}}

X{a2} = {{x}, {y, z}} X
γ
{a2} = {∅}

X{a1,a2} = ∅ X
γ
{a1,a2} = ∅

Moreover, note that Pos({a1}) = {z} = Pos({a1, a2}) and Pos({a2}) = ∅. Finally, we also have Redγ = {{a1}}.

3. Connection of (γ -)decision reducts and (γ -)decision bireducts with definability in a Pawlak approximation space

We start with discussing some relationships between the different notions of reduction. As illustrated in Example 1, it 
is clear that there is no connection between them for an inconsistent decision system. However, for a consistent decision 
system, we have the following result:

Theorem 2. Let A be a consistent decision system, i.e., Pos(C) = U , and B ⊆ C , then

B ∈ Red ⇔ B ∈ Redγ ⇔ XB = {U } ⇔X
γ
B = {U }.

Proof. Immediately from Definitions 4, 5 and 6. �
Hence, if the set of conditional attributes B is a (γ -)decision reduct, then the only subset of the universe which can 

operate as a component to obtain a (γ -)decision bireduct is the universe itself. Vice versa, by computing the (γ -) decision 
bireducts of a consistent decision system, we can easily obtain the set of (γ -)decision reducts. We illustrate this in the 
following example:

Example 2. Let A be the decision system with U = {x, y, z} and C = {a1, a2} presented in Table 2. The system A is consis-
tent. We obtain that Red = Redγ {{a2}}. Moreover, we have the following decision bireducts and γ -decision bireducts:
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X∅ = ∅ X
γ
∅ = ∅

X{a1} = {{x, z}, {y, z}} X
γ
{a1} = {{z}}

X{a2} = {{x, y, z}} X
γ
{a2} = {{x, y, z}}

X{a1,a2} = ∅ X
γ
{a1,a2} = ∅

Next, we want to investigate whether there is a connection between the definable sets in the Pawlak approximation 
space (U , E B) and the sets X ⊆ U such that (B, X) is a decision bireduct, respectively γ -decision bireduct. First, we prove 
that there is a connection between the family of definable sets B(U/E B ) and the set Xγ

B .

Theorem 3. Let A be a decision system and B ⊆ C , then Xγ
B ⊆ B(U/E B).

Proof. If Xγ
B = ∅, then Xγ

B ⊆ B(U/E B), since the Boolean algebra B(U/E B ) contains the empty set. On the other hand, if 
Xγ

B 
= ∅, then Xγ
B = {Pos(B)} by Theorem 1. By definition of the positive region of B , Pos(B) is a definable set, as it is the 

union of a set of equivalence classes based on the indiscernibility relation E B :

Pos(B) =
⋃

{[y]E B ∈ U/E B | y ∈ U ,∃x ∈ U : [y]E B ⊆ [x]Ed }.
Hence, Xγ

B ⊆ B(U/E B). �
Note that the inclusion of Theorem 3 is strict:

Example 3. Let A be the decision system represented in Table 2 and let B = {a2}. We obtain that Xγ
B = {{x, y, z}} and that 

B(U/E B) = {∅, {x}, {y, z}, {x, y, z}}. It is clear that Xγ
B � B(U/E B), as {x} is a definable set in (U , E B ), but (B, {x}) is not a 

γ -decision bireduct.

For a consistent decision system, we have the following connection between B(U/E B ) and the set XB , when B is a 
decision reduct.

Theorem 4. Let A be a consistent decision system and B ∈ Red, then XB ⊆ B(U/E B).

Proof. From Theorem 2 we obtain that XB = {U } ⊆ B(U/E B). �
Unfortunately, we have no general connection between the set of definable sets B(U/E B ) and the set XB .

Example 4. Let A be the decision system represented in Table 2 and let B = {a1}. We obtain that XB = {{x, z}, {y, z}} and 
that B(U/E B) = {∅, {x, y}, {z}, {x, y, z}}. On the one hand, we have that (B, {x, z}) is a decision bireduct, but {x, z} is not 
definable in (U , E B ). On the other hand, the set {x, y} is definable in (U , E B ), but it does not form a decision bireduct with 
B .

4. Connection of (γ -)decision reducts and (γ -)decision bireducts with definability in a covering approximation space

In this section we generalize the concepts of discernibility, decision reducts, bireducts and γ -bireducts to covering ap-
proximation spaces. Furthermore, we study which results concerning reduction and definability remain valid in the more 
general setting.

4.1. Discernibility in a covering approximation space

A crucial point in the definition of a decision reduct is the definition of discernibility of objects by conditional attributes 
in a given subset B ⊆ C . An object x ∈ U is discernible from y ∈ U in the Pawlak approximation space (U , E B) if [x]E B 
=
[y]E B , or if there exists a set K in the partition U/E B such that x ∈ K and y /∈ K . This latter statement can be easily 
generalized for a covering approximation space (U , CB ):

Definition 7. Let A be a decision system and B ⊆ C a set of conditional attributes. We say that the object x ∈ U is discernible 
from the object y ∈ U in the covering approximation space (U , CB) if there exists a set K ∈CB such that x ∈ K and y /∈ K .
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Note that in a Pawlak approximation space the discernibility relation is an equivalence relation since U/E B is a partition. 
In particular, the discernibility relation is symmetric: x is discernible from y in (U , E B) if and only if y is discernible from 
x in (U , E B). This is no longer necessarily the case in a covering approximation space (U , CB). For example, assume CB =
{{x}, {x, y}}, then x is discernible from y, but y is not discernible from x. On the other hand, in [1], Benítez-Caballero et al. 
considered discernibility based on a tolerance relation R B , in which the corresponding discernibility relation is reflexive and 
symmetric (but not necessarily transitive).

In the light of this difference, consistency needs to be redefined in the scope of a covering approximation space (U , CC ): 
A is consistent if for each pair x, y ∈ U with different decision values the object x is discernible from the object y in 
(U , CC ) and if y is discernible from the object x in (U , CC ).

It is possible to give different characterizations of discernibility in a covering approximation space. For this purpose, we 
recall the following two notions related to a covering C.

Definition 8. [3] Let C be a covering of U . The neighborhood of an object x ∈ U is defined as

N(x) =
⋂

{K ∈ C | x ∈ K }.
Moreover, we obtain another covering, called the covering induced by C, which is defined as

Cov(C) = {N(x) | x ∈ U }.

Remark 1. Note that N(x) is sometimes denoted by Cx [3], Neighbor(x) [27] or NC
1 (x) [16]. Moreover, Cov(C) is sometimes 

denoted by C3 [25].

The neighborhood N(x) of an object x has the following properties: x ∈ N(x) and if y ∈ N(x), then N(y) ⊆ N(x). In 
addition, note that for a partition U/E , we have N(x) = [x]E and Cov(U/E) = U/E . For a set of conditional attributes B ⊆ C , 
we denote the neighborhood of x by NB(x) to emphasize the relation with the covering approximation space (U , CB ).

We have the following property which allows us to use different characterizations for discernibility in a covering approx-
imation space.

Proposition 1. Let C be a covering of U and x, y ∈ U , then the following statements are equivalent:

(1) There is a set K ∈C such that x ∈ K and y /∈ K ;
(2) y /∈ N(x);
(3) There is a set K ∈ Cov(C) such that x ∈ K and y /∈ K .

Proof. • (1) ⇔ (2): For every set K ∈ C with x ∈ K it holds that N(x) ⊆ K , hence if K ∈ C such that x ∈ K and y /∈ K , 
then y /∈ N(x). On the other hand, if y /∈ N(x), then by definition of N(x) there exists a set K ∈C with x ∈ K and y /∈ K .

• (2) ⇔ (3): Since N(x) ∈ Cov(C) and x ∈ N(x), if y /∈ N(x), then there is a set K ∈ Cov(C) such that x ∈ K and y /∈ K . On 
the other hand, assume K ∈ Cov(C) with x ∈ K and y /∈ K . As x ∈ K , we have N(x) ⊆ K . As y /∈ K , we have y /∈ N(x). �

Next, we discuss the relationship between the union-closure of a covering and the union-closure of its induced covering.

Proposition 2. Let (U , C) be a covering approximation space, then

1. ∪∗(C) ⊆ ∪∗(Cov(C)),
2. ∪∗(Cov(C)) ⊆ ∪∗(C) ⇔ Cov(C) ⊆C.

Proof. 1. Let K ∈C, we claim that K = ⋃
x∈K

N(x). As x ∈ N(x) for each x ∈ U , it holds that K ⊆ ⋃
x∈K

N(x). On the other hand, 

for every x ∈ K it holds that N(x) ⊆ K , thus, 
⋃

x∈K
N(x) ⊆ K .

Let X ∈ ∪∗(C), then there exists a subset F ⊆C such that X = ⋃
K∈F

K , thus X = ⋃
K∈F

⋃
x∈K

N(x). Therefore, we can write X

as follows: X = ⋃
K ′∈F ′

K ′ with F ′ = {N(x) | x ∈ K , K ∈ F } ⊆ Cov(C). We conclude that X ∈ ∪∗(Cov(C)).

2. If Cov(C) ⊆ C, then ∪∗(Cov(C)) ⊆ ∪∗(C) holds by the definition of union-closure. On the other hand, as-
sume ∪∗(Cov(C)) ⊆ ∪∗(C) and take N(x) ∈ Cov(C) for x ∈ U . Since N(x) ∈ ∪∗(Cov(C)), N(x) ∈ ∪∗(C), thus there 
exists a subset F ⊆C such that N(x) = ⋃

K∈F
K . Since x ∈ N(x), there is a set K ∈ F such that x ∈ K . By definition of the 

union, we have that K ⊆ N(x) and by definition of the neighborhood of x we have that N(x) ⊆ K . Hence, N(x) = K and 
we conclude that N(x) ∈C.

This concludes the proof. �
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Given the definition of discernibility in a covering approximation space and different characterizations of this con-
cept available, we can now introduce the concepts of decision reduct, γ -decision reduct, decision bireduct and γ -decision 
bireduct in a covering approximation space.

4.2. Definitions of (γ -)decision reducts and (γ -)decision bireducts in a covering approximation space

We start by introducing decision reducts in a covering approximation space.

Definition 9. Let A be a consistent decision system. A set of conditional attributes B ⊆ C is a decision reduct for the decision 
system A if and only if for each pair x, y ∈ U satisfying the inequality Id(x) 
= Id(y), x is discerned from y in (U , CB), and 
if B is irreducible with respect to this property, i.e., there is no smaller subset B ′ ⊆ B which satisfies this property.

We denote cRed for the set of decision reducts obtained using covering approximation spaces.

Note that B = ∅ is only a decision reduct when U/d = {U }, similarly as in a Pawlak approximation space.
Next, we introduce γ -decision reducts in covering approximation spaces. For this, we first need to define an appropriate 

notion of positive region, which in turn depends on the choice of lower approximation. As we have mentioned before, in 
this paper we focus on the tight lower approximation. In particular, for reasons that will become clear below, we define the 
positive region of B ⊆ C using apr′

Cov(CB )
. Note also that we still assume that the decision attribute d is associated with an 

equivalence relation Ed:

cPos(B) =
⋃

[x]Ed ∈U/Ed

apr′
Cov(CB )

([x]Ed ) =
⋃

[x]Ed ∈U/Ed

⋃
{K ∈ Cov(CB) | K ⊆ [x]Ed } = {x ∈ U | NB(x) ⊆ [x]Ed }.

We first verify that consistency of a decision system still implies that the positive region equals U . Indeed, let x ∈ U and 
suppose Id(x) 
= Id(y). Since x is discernible from y, there exists a K ∈ CC such that x ∈ K and y /∈ K , hence y /∈ NB(x). In 
other words, NB(x) ⊆ [x]Ed and x ∈ cPos(C).

Definition 10. Let A be a decision system. A set of conditional attributes B ⊆ C is a γ -decision reduct for the decision 
system A if and only if cPos(B) = cPos(C), and if B is irreducible with respect to this property, i.e., there is no smaller subset 
B ′ ⊆ B which satisfies this property. We denote cRedγ for the set of decision reducts obtained using covering approximation 
spaces.

Analogously as in Pawlak’s rough set model, we can maintain the property that for a consistent decision system, the two 
notions of reduct coincide. This is proven formally in the following theorem:

Theorem 5. Let A be a consistent decision system and B ⊆ C , then B ∈ cRed if and only if B ∈ cRedγ .

Proof. We will prove that cPos(B) = cPos(C) if and only if for each pair x, y ∈ U satisfying the inequality Id(x) 
= Id(y), x is 
also discerned from y in (U , CB).

• Suppose first that B ∈ cRed, and consider x ∈ cPos(C). For y ∈ U such that Id(x) 
= Id(y), it holds that there exists a 
K ∈ CB such that x ∈ K and y /∈ K . By Proposition 1, this also means y /∈ NB(x). From this, we infer NB(x) ⊆ [x]Ed , in 
other words x ∈ cPos(B). Together with cPos(B) ⊆ cPos(C) = U , this implies that cPos(B) = cPos(C).

• Suppose cPos(B) = cPos(C) = U . Consider x, y ∈ U such that Id(x) 
= Id(y). Since x is discerned from y in (U , CC ), there 
exists K ∈CC such that x ∈ K and y /∈ K . Assume now that x is not discerned from y in (U , CB), in other words for all 
K ∈ CB such that x ∈ K , also y ∈ K . From this follows that y ∈ NB(x), and thus also NB(x) � [x]Ed . Hence, x /∈ cPos(B), 
a contradiction. �

The following example shows that the use of the induced covering Cov(CB), rather than CB itself, is necessary in the 
definition of cPos(B) to maintain the equivalence of Theorem 5.

Example 5. Let A be the consistent decision system with U = {x, y, z} presented in Table 3 and C = {a1, a2}. Define C{a1} =
{R1(u) | u ∈ U }, with R1(u) = {v ∈ U | v 
= u ∧ a1(v) = a1(u)}, and C{a2} = {R2(u) | u ∈ U }, with R2(u) = {v ∈ U | a2(v) =
a2(u)}. Then C{a1} = {{y, z}, {x, z}, {x, y}} and C{a2} = {{x}, {y}, {z}}. Clearly, cRed = {{a1}, {a2}}, and

N{a1}(x) = N{a2}(x) = {x}, N{a1}(y) = N{a2}(y) = {y}, N{a1}(z) = N{a2}(z) = {z}.
From this, we find cPos({a1}) = cPos({a2}) = cPos(C) = {x, y, z}, as expected. On the other hand,⋃

[u]E ∈U/Ed

apr′
C{a1}

([u]Ed ) = apr′
C{a1}

({x}) ∪ apr′
C{a1}

({y}) ∪ apr′
C{a1}

({z}) = ∅,
d
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Table 3
Decision system A from 
Example 5.

a1 a2 d

x 1 0 0
y 1 0.5 1
z 1 1 2

while ⋃
[u]Ed

∈U/Ed

apr′
CC

([u]Ed ) = {x, y, z}.

Next, we define decision bireducts in covering approximation spaces.

Definition 11. Let A be a decision system. A pair (B, X) with B ⊆ C and X ⊆ U is a decision bireduct if and only if for each 
pair x, y ∈ X satisfying inequality Id(x) 
= Id(y) the object x is discerned from the object y in the covering approximation 
space (U , CB), y is discerned from x in (U , CB) and the following properties hold:

1. There is no B ′ � B such that for each pair x, y ∈ X satisfying inequality Id(x) 
= Id(y) the object x is discerned from the 
object y in the covering approximation space (U , CB ′ ) and y is discerned from x in (U , CB ′ ).

2. There is no X ′ � X such that for each pair x, y ∈ X ′ satisfying inequality Id(x) 
= Id(y) the object x is discerned from 
the object y in the covering approximation space (U , CB) and y is discerned from x in (U , CB).

We denote cXB for the set {X ⊆ U | (B, X) decision bireduct} when covering approximation spaces are used.

Finally, γ -decision bireducts in covering approximation spaces are defined.

Definition 12. Let A be a decision system. A pair (B, X) with B ⊆ C and X ⊆ U is a γ -decision bireduct if and only if 
for each pair x ∈ X, y ∈ U satisfying inequality Id(x) 
= Id(y) the object x is discerned from the object y in the covering 
approximation space (U , CB) and the following properties hold:

1. There is no B ′ � B such that for each pair x ∈ X, y ∈ U satisfying inequality Id(x) 
= Id(y) the object x is discerned from 
the object y in the covering approximation space (U , CB ′ ).

2. There is no X ′ � X such that for each pair x ∈ X ′, y ∈ U satisfying inequality Id(x) 
= Id(y) the object x is discerned 
from the object y in the covering approximation space (U , CB ).

We denote cXγ
B for the set {X ⊆ U | (B, X) γ -decision bireduct} when covering approximation spaces are used.

Note that for a decision bireduct (B, X) it holds that

∀x, y ∈ X : Id(x) 
= Id(y) ⇒ y /∈ NB(x) and x /∈ NB(y),

while for a γ -decision bireduct (B, X) we have that

∀x ∈ X,∀y ∈ U : Id(x) 
= Id(y) ⇒ y /∈ NB(x).

Moreover, X = ∅ can never form a decision bireduct with B ⊆ C , since we can always extend X with an object x ∈ U . 
However, it is possible that (B, ∅) is a γ -decision bireduct. In addition, analogously as in a Pawlak approximation spaces, 
it is possible that the set B ⊆ C forms a decision bireduct with different sets of objects and that the set X ⊆ U forms a 
decision bireduct with different sets of conditional attributes. On the other hand, given B ⊆ C , there is at most one subset 
X ⊆ U such that (B, X) is a γ -decision bireduct, namely X = cPos(B). The latter observation is summed up in the following 
analogon of Theorem 1.

Theorem 6. Let A be a decision system and B ⊆ C. If cXγ
B 
= ∅, then cXγ

B = {cPos(B)}.

Proof. We first show that | cXγ
B | ≤ 1. If cXγ

B = ∅, then | cXγ
B | = 0. Assume that cXγ

B = {X, Y } with X 
= Y . Without loss of 
generality, take x ∈ X \ Y . Since (B, X) is a γ -decision bireduct and x ∈ X , we have that ∀z ∈ U : Id(x) 
= Id(z) ⇒ z /∈ NB(x). 
On the other hand, since (B, Y ) is a γ -decision bireduct and x /∈ Y , it holds that ∃z ∈ U : Id(x) 
= Id(z) ∧ z ∈ NB(x). This is a 
contradiction. Hence, we conclude that cXγ

B contains at most one set of objects.
Now assume that cXγ = {X}. We prove that x ∈ X if and only if NB(x) ⊆ [x]E :
B d
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• Assume x ∈ X , then NB(x) ⊆ [x]Ed since (B, X) is a γ -decision bireduct.
• Assume x /∈ X , then there exists an object y ∈ U such that Id(x) 
= Id(y) and y ∈ NB(x). Hence, NB(x) � [x]Ed .

We conclude that X is given by {x ∈ U | NB(x) ⊆ [x]Ed } = cPos(B). �
4.3. Results concerning reduction and definability in a covering approximation space

In this section, we study whether the results from Section 3 concerning (γ -)decision bireducts are still valid when 
covering approximation spaces are considered. First, we study the relation between decision reducts, decision bireducts and 
γ -decision bireducts for a consistent decision system A.

First, we show that Theorem 2 remains valid:

Theorem 7. Let A be a consistent decision system and B ⊆ C , then

B ∈ cRed ⇔ cXB = {U } ⇔ cXγ
B = {U }.

Proof. Immediately from Definitions 9, 11 and 12. �
In the following, we study the connection between cXγ

B and the set of definable sets of (U , CB ) given by ∪∗(CB), 
for B ⊆ C . In Pawlak’s setting, Xγ

B ⊆ B(U/E B). However, we do not have cXγ
B ⊆ ∪∗(CB) as illustrated in the next example.

Example 6. Let A be a decision system with U = {v, w, x, y, z}, U/Ed = {{v, w, x}, {w, y}} and let a ∈ C be a conditional 
attribute such that Ia(v) = Ia(w) = 0, Ia(x) = Ia(y) = 1 and Ia(z) = 0.5. We construct the covering C{a} in the following 
way: C{a} = {R(x) | x ∈ U } with y ∈ R(x) if and only if |a(x) − a(y)| ≤ 0.5. It holds that:

C{a} = {{v, w, z}, {x, y, z}, {v, w, x, y, z}}.
Hence, ∪∗(C{a}) = {∅, {v, w, z}, {x, y, z}, {v, w, x, y, z}}. For the attribute a we have cXγ

{a} = {{z}}. We conclude that cXγ
{a} is 

not a subset of ∪∗(C{a}).

Note that for a partition U/E it holds that Cov(U/E) = U/E , hence, Theorem 3 also states that Xγ
B ⊆ B(Cov(U/E)). This 

result can be generalized for covering approximation spaces. Indeed, if we consider instead the family of definable sets in 
the union-closure ∪∗(Cov(CB)), we can obtain the following extension of Theorem 3:

Theorem 8. Let A be a decision system and B ⊆ C , then cXγ
B ⊆ ∪∗(Cov(CB)).

Proof. If cXγ
B = ∅, then the inclusion holds trivially. On the other hand, let X ∈ cXγ

B with X = {x ∈ U | NB(x) ⊆ [x]Ed }. We 
claim that X = ⋃

x∈X
NB(x):

• Let x ∈ X . Since x ∈ NB(x) it holds that X ⊆ ⋃
x∈X

NB(x).

• Let y ∈ ⋃
x∈X

NB(x), then there is an object x ∈ X such that y ∈ NB(x), hence, NB(y) ⊆ NB(x). Since x ∈ X we have NB(x) ⊆
[x]Ed and since y ∈ NB(x), we have [x]Ed = [y]Ed . Thus, NB(y) ⊆ [y]Ed . Therefore, y ∈ X .

As Cov(CB) = {NB(x) | x ∈ U }, it holds that X ∈ ∪∗(Cov(CB)). �
Example 7. Recall the decision system of Example 6. We have that Cov(C{a}) = {{v, w, z}, {x, y, z}, {z}} and

∪∗(Cov(C{a})) = {∅, {v, w, z}, {x, y, z}, {z}, {v, w, x, y, z}}.

The set of definable sets ∪∗(CB) does not contain the set cXγ
B since the sets of CB are ‘too big’. By consider-

ing ∪∗(Cov(CB)) we allow sets which have been built by intersection (Cov) and/or union (∪∗).

5. Worked example

In this section, we will illustrate the concepts studied in this paper in a simple decision system, taken as a sample from 
the Pima Indians Diabetes data set located at the UCI Machine Learning repository,1 and also considered in [4].

1 Available at http://www.ics .uci .edu /~mlearn /MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 4
Decision system A from Section 5, and its normalized version.

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 1 101 50 15 36 24.2 0.526 26 0
x2 8 176 90 34 300 33.7 0.467 58 1
x3 7 150 66 42 342 34.7 0.718 42 0
x4 7 187 68 39 304 37.7 0.254 41 1
x5 0 100 88 60 110 46.8 0.962 31 0
x6 0 105 64 41 142 41.5 0.173 22 0
x7 1 95 66 13 38 19.6 0.334 25 0

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 0.125 0.065 0.000 0.043 0.000 0.169 0.447 0.111 0
x2 1.000 0.880 1.000 0.447 0.863 0.518 0.373 1.000 1
x3 0.875 0.598 0.400 0.617 1.000 0.555 0.691 0.556 0
x4 0.875 1.000 0.450 0.553 0.876 0.665 0.103 0.528 1
x5 0.000 0.054 0.950 1.000 0.242 1.000 1.000 0.250 0
x6 0.000 0.109 0.350 0.596 0.346 0.805 0.000 0.000 0
x7 0.125 0.000 0.400 0.000 0.007 0.000 0.204 0.083 0

The original decision system is shown in the upper part of Table 4. It contains seven objects (U = {x1, . . . , x7}) and 
eight conditional attributes that are all quantitive (C = {a1, . . . , a8}). We have one qualitative decision attribute d with two 
possible values, indicating the absence (d = 0) or presence of diabetes (d = 1). In order to make the construction of coverings 
for individual attributes uniform, we first divide all conditional attributes’ values by their range. The normalized decision 
system is shown in the lower part of Table 4.

We define the coverings C{ai } , i = 1, . . . , 7, as follows: C{ai } = {Ri(x) | x ∈ U } with y ∈ Ri(x) if and only if |ai(x) −ai(y)| ≤
0.2. We thus find:

C{a1} = {{x1, x5, x6, x7}, {x2, x3, x4}}
C{a2} = {{x1, x5, x6, x7}, {x2, x4}, {x3}}
C{a3} = {{x1}, {x2, x5}, {x3, x4, x6, x7}}
C{a4} = {{x1, x7}, {x2, x3, x4, x6}, {x5}}
C{a5} = {{x1, x7}, {x2, x3, x4}, {x5, x6}}
C{a6} = {{x1, x7}, {x2, x3, x4}, {x4, x6}, {x5, x6}}
C{a7} = {{x1, x2}, {x2, x4, x7}, {x2, x7}, {x3}, {x4, x6}, {x4, x6, x7}, {x5}}
C{a8} = {{x1, x5, x6, x7}, {x1, x5, x7}, {x1, x6, x7}, {x2}, {x3, x4}}

Note that the first five coverings are partitions, while the last three ones are not. For these last three, we also list the 
corresponding induced coverings Cov(C{ai }), which will be needed in the computation of the positive region:

Cov(C{a6}) = {{x1, x7}, {x2, x3, x4}, {x4}, {x4, x6}, {x5, x6}, {x6}}
Cov(C{a7}) = {{x1, x2}, {x2}, {x3}, {x4}, {x4, x6}, {x5}, {x7}}
Cov(C{a8}) = {{x1, x5, x7}, {x1, x6, x7}, {x1, x7}, {x2}, {x3, x4}}

For general B ⊆ C , the coverings CB are constructed by taking non-empty intersections of sets in C{a} for all a ∈ B . For 
example,

C∅ = {{x1, x2, x3, x4, x5, x6, x7}}
C{a1,a2} = {{x1, x5, x6, x7}, {x2, x4}, {x3}}
C{a1,a3} = {{x1}, {x2}, {x3, x4}, {x5}, {x6, x7}}

CC = {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}}
The last equality also makes it clear that the decision system is consistent, as all objects (and, a fortiori, all objects 
in different classes) can be discerned by the full set of conditional attributes. As a consequence, the sets of decision 
reducts, cRed, and the set of γ -decision reducts, cRedγ , are equal in this case. We find them by computing the posi-
tive region of subsets of attributes, starting with singleton subsets and consecutively adding attributes to the non-reduct 
ones, taking into account the minimality condition for decision reducts. For example, cPOS({a1}) = {x1, x5, x6, x7} and 
cPOS({a2}) = {x1, x2, x3, x4, x5, x6, x7}, ensuring that {a2} is a decision reduct and {a1} is not. In this way, we obtain the 
following set of (γ -) decision reducts:
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cRed = cRedγ = {{a2}, {a7}, {a3,a6}, {a6,a8}, {a1,a3,a4}}
In order to find decision bireducts and γ -decision bireducts, we operate in a similar way as for decision reducts, starting 

with the empty set and consecutively adding attributes, checking for each subset B ⊆ C whether there exist maximal subsets 
X of U such that discernibility is preserved (between elements in X for decision reducts, and between elements in X and 
all elements in U for γ -decision reducts).

For γ -decision reducts, the task is simplified by Theorem 6; indeed, given B ⊆ C , cXγ
B = {cPOS(B)}, provided there does 

not exist a B ′ � B such that cPOS(B) = cPOS(B ′).
For example, both cX∅ and cXγ

∅ are empty, while cX{a1} = {{x1, x2, x4, x5, x6, x7}, {x1, x3, x5, x6, x7}}. Indeed, when con-
sidering only the attribute a1, every X in cX{a1} contains at least {x1, x5, x6, x7}, i.e., the patch K ∈C{a1} which only contains 
elements from the non-diabetes decision class. We can expand this patch either with x3 , or with {x2, x4} without creating 
indiscernibilities between elements of opposite classes. On the other hand, cXγ

{a1} = {{x1, x5, x6, x7}, since those are the 
elements belonging to the positive region of this attribute.

Finally, all decision bireducts and γ -decision bireducts are given as:

Decision bireducts γ -decision bireducts

cX{a1} = {{x1, x2, x4, x5, x6, x7}, {x1, x3, x5, x6, x7}} cXγ
{a1} = {{x1, x5, x6, x7}}

cX{a2} = {U } cXγ
{a2} = {U }

cX{a3} = {{x1, x2, x3, x6, x7}, {x1, x2, x4}, {x1, x4, x5}, {x1, x3, x3, x5, x6, x7}} cXγ
{a3} = {{x1, x5, x7}}

cX{a4} = {{x1, x2, x4, x5, x7}, {x1, x3, x5, x6, x7}} cXγ
{a4} = {{x1, x5, x7}}

cX{a5} = {{x1, x2, x4, x5, x6, x7}, {x1, x3, x5, x6, x7}} cXγ
{a5} = {{x1, x5, x6, x7}}

cX{a6} = {{x1, x2, x4, x5, x6, x7}, {x1, x3, x4, x5, x6, x7}} cXγ
{a6} = {{x1, x4, x5, x6, x7}}

cX{a7} = {U } cXγ
{a7} = {U }

cX{a8} = {{x1, x2, x4, x5, x6, x7}, {x1, x2, x3, x5, x6, x7}} cXγ
{a8} = {{x1, x2, x5, x6, x7}}

cX{a1,a3} = {{x1, x2, x3, x5, x6, x7}} cXγ
{a1,a3} = {{x1, x2, x5, x6, x7}}

cXγ
{a3,a4} = {{x1, x2, x5, x7}}

cX{a3,a5} = {{x1, x2, x3, x5, x6, x7}} cXγ
{a3,a5} = {{x1, x2, x5, x6, x7}}

cX{a3,a6} = {U } cXγ
{a3,a6} = {U }

cX{a6,a8} = {U } cXγ
{a6,a8} = {U }

cX{a1,a3,a4} = {U } cXγ
{a1,a3,a4} = {U }

with the understanding that the remaining cXB and cXγ
B are empty.

6. Conclusion and future work

In this paper, we have combined different reduction techniques of rough sets with a semantical approach of Pawlak’s 
rough sets. Moreover, we have extended the notion of discernibility of objects to covering approximation spaces, leading 
to the introduction of decision reducts, decision bireducts and γ -decision bireducts in covering approximation spaces. Both 
in the Pawlak approximation space (U , E B ) and the covering approximation space (U , CB) there is at most one γ -decision 
bireduct (B, X), in which the set of object X equals the B-positive region Pos(B), resp. cPos(B). Moreover, the set X is no 
longer a definable set related with (U , CB ), but is definable for the induced covering approximation space (U , Cov(CB)).

Future work directives include the study of reduction in particular covering approximation spaces. For example, when 
dominance relations are used to construct the covering [7,8] or when covering approximation spaces are related to incom-
plete decision tables [9–11]. On the other hand, computationally efficient procedures for finding all (γ -) decision reducts, 
similar to the ones proposed for Pawlak’s rough set model in [20], need to be devised. Finally, we will also investigate the 
connection of reduction in fuzzy covering approximation spaces with δ-information reducts and bireducts introduced by 
Benítez et al. [2].
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[18] D. Ślȩzak, A. Janusz, Ensembles of bireducts: towards robust classification and simple representation, in: FGIT 2011, in: LNCS, vol. 7105, Springer, 

Heidelberg, 2011, pp. 64–77.
[19] S. Stawicki, D. Ślȩzak, Recent advances in decision bireducts: complexity, heuristics and streams, in: Proceedings of 8th International Conference on 

Rough Sets and Knowledge Technology, 2013, pp. 200–212.
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[26] W. Żakowski, Approximations in the space (u, π), Demonstr. Math. 16 (1983) 761–769.
[27] W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Inf. Sci. 179 (3) (2009) 210–225.

http://refhub.elsevier.com/S0888-613X(18)30427-4/bib62656E6974657As1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6A6F73655F64656C7461s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6A6F73655F64656C7461s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6368656E5F617474726962757465s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6368656E5F617474726962757465s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib636F726E656C69733A32303038s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib636F726E656C69733A32303038s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib646565725F6173656D616E746963616Cs1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib646565725F6173656D616E746963616Cs1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib646565725F6173656D616E746963616C6C79s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib646565725F6173656D616E746963616C6C79s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib677265636F5F726F756768s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib677265636F5F6D756C74696372697465726961s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib677265636F5F6D756C74696372697465726961s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib67727A796D616C615F7468726565s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib67727A796D616C615F7468726565s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6B7279737A6B69657769637A5F72756C6573s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6B7279737A6B69657769637A5F696E636F6D706C657465s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6C69755F636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib6D69726B696E5F6D617468656D61746963616Cs1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7061776C616B5F726F756768s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7061776C616B5F727564696D656E7473s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib726573747265706F5F6475616C697479s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib726573747265706F5F6475616C697479s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib736C657A616B5F726F756768s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib736C657A616B5F726F756768s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib736C657A616B5F656E73656D626C6573s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib736C657A616B5F656E73656D626C6573s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7374617769636B695F636F6D706C6578697479s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7374617769636B695F636F6D706C6578697479s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7374617769636B695F696A6172s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7374617769636B695F6465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7374617769636B695F6465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib79616F5F616E6F7465s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib79616F5F74776Fs1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib79616F3A32303132s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib79616F5F636F766572696E67s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7A616B6F77736B695F617070726F78696D6174696F6E73s1
http://refhub.elsevier.com/S0888-613X(18)30427-4/bib7A68755F746F706F6C6F676963616Cs1

	Decision reducts and bireducts in a covering approximation space and their relationship to set deﬁnability
	1 Introduction
	2 Preliminaries
	2.1 Deﬁnable sets in Pawlak and covering approximation spaces
	2.2 Decision reducts, γ-decision reducts, bireducts and γ-decision bireducts in a Pawlak approximation space

	3 Connection of (γ-)decision reducts and (γ-)decision bireducts with deﬁnability in a Pawlak approximation space
	4 Connection of (γ-)decision reducts and (γ-)decision bireducts with deﬁnability in a covering approximation space
	4.1 Discernibility in a covering approximation space
	4.2 Deﬁnitions of (γ-)decision reducts and ( γ-)decision bireducts in a covering approximation space
	4.3 Results concerning reduction and deﬁnability in a covering approximation space

	5 Worked example
	6 Conclusion and future work
	Conﬂict of interest statement
	Acknowledgements
	References


