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Relation extration from texts is one of the most diÆult tasks of IE. In nat-ural language, relations an be expressed in di�erent ways, hene no universal setof rules or patterns for mining them an be onstruted. Traditional algorithmsfor relation learning from texts an perform reasonably well (see e.g. [1, 2, 5, 12℄),but they typially rely expliitly or impliitly on spei� interation keywords,whih limits their appliability to heterogeneous data. The biggest obstale withheterogeneous datasets is that they desribe protein interations using di�erentlexions. However, entirely di�erent surfae representations for interations anstill exhibit the same syntati pattern. We therefore propose to abstrat frompure lexial data and to onentrate only on more general language struturessuh as parsing and dependeny information. This oarser grained approah al-lows to ope better with the lexial variane in the data. Indeed, taking the fatinto aount that lexially di�erent expressions of protein interations might stillbear some resemblane on the syntati level provides welome hints for mahinelearning tehniques that ommonly thrive on similarities in the data.The resulting system is a mining tool that failitates information extrationand knowledge base maintenane by presenting to the user protein interationsidenti�ed in sienti� texts. The tool aims at supporting biologists in �nding rel-evant information, rather than to exlude them entirely from the data proessingow. After reviewing related approahes in Setion 2, we give a detailed desrip-tion of the proposed method in Setion 3. Abstrating from pure lexial dataand only relying on syntati patterns instead bears the risk of overgeneraliz-ing, in the sense that sentenes that do not desribe protein interations mightexhibit a syntati struture similar to those that do, and hene they might getinorretly identi�ed as protein interations. To verify the reliability of our ap-proah we therefore evaluated it on two benhmark datasets. The experimentalresults and a omparison with existing algorithms are desribed in Setion 4.Conluding remarks and future work are presented in Setion 5.2 Related workThe extration of protein relations has attrated a lot of attention during the lastyears, resulting in a range of di�erent approahes. The �rst step is the reognitionof the protein names themselves (see e.g. [3, 6, 15℄). As the fous of this paperis on the mining of interations, we assume that protein name reognition hasalready taken plae. The reognition of protein interations is typially treated asa lassi�ation problem: the lassi�er gets as input information about a senteneontaining two protein names and deides whether the sentene desribes anatual interation between those proteins or not. The lassi�er itself is builtmanually or, alternatively, it is onstruted automatially using an annotatedorpus as training data. The di�erent approahes an be distinguished basedon the information they feed to the lassi�er: some methods use only shallowparsing information on the sentene while others exploit full parsing information.Shallow parsing information inludes part-of-speeh (POS) tags and lexialinformation suh as lemmas (the base form of words ouring in the sentene)



and orthographi features (apitalization, puntuation, numerals et.). In [2℄, asupport vetor mahine (SVM) model is used to disover protein interations. Inthis approah eah sentene is split into three parts | before the �rst protein,between the two proteins and after the seond protein. The kernel funtionbetween two sentenes is omputed based on ommon sequenes of words andPOS tags. In another approah [5℄, this kernel funtion is modi�ed to treat thesame parts of the sentene as bags-of-words and alled a global ontext kernel.It is ombined with another kernel funtion alled a loal ontext kernel, thatrepresents a window of limited size around the protein names and onsiders POS,lemmas, and orthographi features as well as the order of words. The resultingkernel funtion in this ase is a linear ombination of the global ontext kernel,and the loal ontext kernel.A ompletely di�erent approah is presented in [12℄, where very high realland preision rates are obtained by means of hand-rafted rules for sentenesplitting and protein relation detetion. The rules are based on POS and keywordinformation, and they were built and evaluated spei�ally for Esherihia oliand yeast domains. It is questionable, however, whether omparable results ouldbe ahieved in di�erent biologial domains and how muh e�ort would be neededto adapt the approah to a new domain. In another approah reported on in [8℄, asystem was built spei�ally for the LLL hallenge (see Setion 4). First, trainingset patterns are built by means of pairwise sentene alignment using POS tags.Next, a geneti algorithm is applied to build several �nite state automata (FSA)that apture the relational information from the training set.Besides the methods desribed above, approahes have been proposed thataugment shallow parsing information with full parsing information, i.e. syntatiinformation suh as full parse and dependeny trees. In [4℄ for instane, forevery sentene ontaining two protein names a feature vetor is built ontainingterms that our in the path between the proteins in the dependeny tree ofthe sentene. These feature vetors are used to train an SVM based lassi�erwith a linear kernel. More omplex feature vetors are used in [10℄, where theloal ontexts of the protein names, the root verbs of the sentene, and theparent of the protein nodes in the dependeny tree are taken into aount by aBayesNet lassi�er. In [7℄, syntati information preproessing, hand-made rules,and a domain voabulary are used to extrat gene interations. The approahin [17℄ uses prediate-argument strutures (PAS) built from dependeny trees.As surfae variations may exhibit the same PAS, the approah aims at taklinglexial variane in the data. It is tailored towards the AImed dataset (see Setion4) for whih 5 lasses of relation expression templates are prede�ned manually.The lasses are automatially populated with examples of PAS patterns andprotein interations are identi�ed by mathing them against these patterns.To the best of our knowledge, all existing work either uses only shallowparsing information (inluding lexial information) or a ombination of shallowand full parsing information. Furthermore, approahes of the latter kind typiallyuse dependeny trees only as a means to e.g. detet hunks or to extrat relevantkeywords. The goal of this paper is to investigate what an be ahieved using



only full parsing information. In other words, the full parsing information isnot used as a means to selet whih further (lexial) information to feed to thelassi�er, but it is used as a diret input itself to the lassi�er. The fat that suhan approah is independent of the use of a spei� lexion makes it worthwhileto investigate.3 DEEPER: a Dependeny and Parse tree based RelationextratorThere is an abundane of ways in English to express that proteins stimulate orinhibit one another, and the available annotated orpora on protein interationsover only a small part of them. In other words, when the interation mining toolis onfronted with a previously unseen text, it is likely for this text to ontainprotein interations desribed in ways for whih there is no exat mathingexample in the training data. However, di�erent surfae representations an stillexhibit a similar syntati pattern, as the following example illustrates.Example 1. Consider the following sentenes about the interation between sig-ma F and sigma E in one ase and between GerE and otB in the other ase:Sigma F ativity regulates the proessing of sigma E within the motherell ompartment.A low GerE onentration, whih was observed during the experiment,ativated the transription of otB by �nal sigmaK RNA polymerase,whereas a higher onentration was needed to ativate transription ofotX or otC.Although the surfae representations are very di�erent, the underlying syntatipattern, whih represents part of a dependeny tree, is the same in both ases:protein nn noun nsubj verb dobj! noun prep of! proteinWe exploit this deeper similarity between training instanes by using depen-deny and parsing information to build abstrat representations of interations.Suh representations have less variane than the initial lexial data, hene sen-sible results an be obtained from smaller training datasets. The approah isfully automatial and onsists of three stages: after a text preproessing stage,for every sentene ontaining two tagged protein names, we onstrut a featurevetor summarizing relevant information on the parse tree and the dependenytree. In the third stage a lassi�er is trained to reognize whether the sentenedesribes an atual interation between the proteins. The novelty of the approahw.r.t. existing work is that we do not use dependeny data to detet keywords,but we onsider dependenies as features themselves. In the next setion we showthat using only this kind of syntati information without any lexial data allowsto obtain reasonably good results.



Text preproessing This step is intended to simplify the sentene struture andhene inrease the parser reliability. It inludes sentene splitting as well as thedetetion and the substitution of omplex utteranes (e.g. hemial formulasor onstrutions with many parentheses) with arti�ial strings, whih in someases an otherwise signi�antly redue the quality of parsing. Furthermore, weexpand repeating strutures, turning e.g. `sigA- and sigB-proteins' or `sigA/sigB-proteins' into 'sigA-proteins and sigB-proteins'. All substitutions are done auto-matially by means of regular expressions; hene the same kind of preproessingan be applied to an arbitrary text. Moreover, tagged protein names in the textmay inlude more than one word; in order to treat them as a single entity infurther proessing stages, we replae them in the same manner as formulas. Fi-nally, we take all possible pairwise ombinations of proteins in eah sentene andreate one sentene for eah ombination where only this ombination is tagged.Part of this proess is shown in Example 2.Example 2. Below is the result after text preproessing for the seond sentenefrom Example 1:A low GerE onentration, whih was observed during the experiment,ativated the transription of otB by �nal sigmaK RNA polymerase,whereas a higher onentration was needed to ativate transription ofotX or otC.. . .A low GerE onentration, whih was observed during the experiment,ativated the transription of otB by �nal sigmaK RNA polymerase,whereas a higher onentration was needed to ativate transription ofotX or otC.Feature vetor onstrution After the text preproessing stage, for eah sentenewe build a feature vetor that summarizes important syntati information onthe parse tree and the typed dependeny tree, whih are both ways of repre-senting sentene struture. A parse tree is a tree (in terms of graph theory) thatrepresents the syntatial struture of a sentene. Words from the sentene areleaves of the parse tree and syntatial roles are intermediate nodes, so a parsetree represents the nesting struture of multi-word onstituents. A dependenytree on the other hand represents interonnetions between individual words ofthe sentene. Hene, all nodes of the dependeny tree are words of the sentene,and edges between nodes represent syntati dependenies. In typed dependenytrees, edges are labeled with syntati funtions (e.g., subj, obj). Figure 1 depitsthe typed dependeny tree and parse tree for the �rst sentene of Example 1.During the feature extration phase we parse eah sentene with the StanfordParser6. For eah tagged pair of proteins (reall that eah sentene has onlyone suh pair), we extrat a linked hain [14℄ from the dependeny tree. Thedependeny tree is unordered w.r.t. the order of the words in the sentene; heneto produe patterns uniformly, we order the branhes in the linked hain based6 http://nlp.stanford.edu/downloads/lex-parser.shtml



Fig. 1. Dependeny and parse trees and linked hain for the �rst sentene of Ex. 1.on the position of the words in the initial sentene. Thus the left branh ontainsthe word that ours earlier in the sentene and the right branh the word thatours later. The absolute majority of the branhes in the linked hains from thedatasets we examined ontain no more than 6 edges, and those whih ontainmore are negative instanes, so we hoose feature vetors with 6 features for eahbranh to over all positive examples from the training set. Therefore, we usethe �rst 6 dependenies from the left branh as the �rst 6 features in the featurevetor. Likewise, the �rst 6 dependenies from the right branh orrespond tofeatures 7 through 12. Moreover, to better desribe the struture of the relationwe inorporate information from the parse tree as well, namely the length of thepath from the root of the parse tree to eah protein as the 13th and the 14thfeature, and the number of nested subsentenes in these paths as the 15th andthe 16th feature.Example 3. Below is the feature vetor of the �rst sentene from Example 1:nsubj nn dobj prep of 4 7 0 0We extrat a linked hain between the two proteins, as shown in Figure 1. It isalready ordered, i.e. Sigma F preedes Sigma E in the sentene, so we do notneed to swap these branhes. We take the left branh and �ll the �rst 6 featuresof the feature vetor. As the branh ontains only 2 dependenies | nsubj and



nn, 4 slots in the vetor remain empty. Features 7-12 for the right branh are�lled in the same manner. Sigma F is at depth 4 in the parse tree while Sigma Eis at depth 7, and the parse tree in Figure 1 does not ontain subsentenes. Allthis information is reeted in the last 4 features of the vetor. Note that theresulting feature vetor ontains several empty �elds; only the most ompliatedsentenes will have a value for eah feature in the vetor.Training a lassi�er By the above proess, we obtain a set of feature vetors forsentenes whih an be divided into two lasses| those that desribe real proteininterations and those that do not. Therefore, we an use a standard lassi�ationalgorithm to distinguish between these two lasses. To build the lassi�er, we usea deision tree algorithm (C4.5 implementation [13℄) and the BayesNet lassi�er[9℄. These two algorithms represent lassial instanes of two branhes of mahinelearning | rule indution and statistial learning | whih employ di�erentapproahes to data proessing. Deision trees onsist of internal nodes whihrepresent onditions on feature values, and leaves whih represent lassi�ationdeisions that onform to the feature values in nodes on the way to this leaf.The BayesNet lassi�er is represented as a direted graph with a probabilitydistribution for eah feature in the nodes and with the edges denoting onditionaldependenies between di�erent features. When we use the BayesNet lassi�er weapply a onditional independene assumption, whih means that probabilities ofnode values depend only on probabilities of values of their immediate parents,and do not depend on higher anestors. This orresponds to the reasonableassumption that the syntati role of a node in the linked hain depends on thesyntati role of its parent only.To overome the problem of missing values (whih our frequently in thefeature vetors), in the BayesNet lassi�er we simply hange them by a defaultvalue. With C4.5, to lassify an instane that have a missing value for a givennode, the instane is weighted proportionally to the number of instanes thatgo down to eah branh, and reursively proessed on eah hild node w.r.t. toassigned weight. This proess is desribed in more detail in [16℄.4 Experimental EvaluationTo verify the reliability of our approah, we evaluated it on two datasets. The�rst dataset [11℄ originates from the Learning Language in Logi (LLL) relationmining hallenge on Geni Interation Extration7. This dataset ontains anno-tated protein/gene interations onerned with Basilius subtilis transription.The sentenes in the dataset do not make up a full text, but they are individualsentenes taken from several abstrats retrieved from Medline. The proteins in-volved in the interations are annotated with agent and target roles; beause oururrent approah is not aimed at mining the diretion of interations, we ignorethis annotated information and treat the interations as symmetrial relations.7 http://genome.jouy.inra.fr/texte/LLLhallenge/



The AImed dataset [1℄ is ompiled from 197 abstrats extrated from theDatabase of Interating Proteins (DIP) and 28 abstrats whih ontain proteinnames but do not ontain interations. Sine we are interested in retrievingprotein interations, in this paper we use only the former set of abstrats. Theonnetion between a full name of a protein and its abbreviation, e.g. tumornerosis fator (TNF), is annotated as an interation in the AImed dataset.Sine suh an annotation is not onerned with an atual interation betweendi�erent proteins, we omit this kind of data from our experiments. Furthermorewe removed nested protein annotations, whih wrap around another protein orinteration annotation. Finally, TI- and AD- setions as well as PG- pre�xes,whih are Medline artifats, were removed.More information about the datasets is listed in Table 1. From this table,it is lear that the AImed dataset is highly imbalaned, as there is a strongbias to negative examples. To the best of our knowledge, these are the onlytwo publily available datasets ontaining annotations of protein interationsand hene suitable to evaluate our approah. In the evaluation we used 10-foldTable 1. Datasets used in the experimentsDataset # sentenes # positive instanes # negative instanesAImed 1978 816 3204LLL'05 77 152 233ross validation for both the AImed and the LLL05 dataset; furthermore we ranexperiments with AImed as training set and LLL05 as test set. We used Weka[16℄ for the implementation of the mahine learning methods.The di�erene in the datasets requires di�erent parameters to ahieve optimalperformane. As we have mentioned above, the AImed dataset is imbalanedand using it for training tends to lead to a bias towards lassifying examples asnegative (independently of the training sheme). For this reason, we use ost-sensitive learning [16℄ to derease the bias when AImed is used as a training set.Moreover, in the C4.5 implementation for the AImed dataset, we build a binarydeision tree, i.e. at eah node the algorithm tests only one value of one feature.Otherwise, the algorithm would deide that the empty tree lassi�es the datasetin the best way, and all examples would be lassi�ed as negative (again, beauseof the biased dataset).The results below are desribed in terms of the sentenes that are (in)orretlyidenti�ed by the system as desribing a protein interation, as these are exatlythe instanes that the system will present to the biologist. The relevant instanesare the sentenes that should have been identi�ed as desribing protein intera-tions; this inludes the true positives, i.e. the positive instanes that are orretlyidenti�ed by the system, but also the false negatives, i.e. the positive instanesthat are overlooked by the system. The retrieved instanes are the sentenes



that are identi�ed by the system as desribing protein reations. This inludesthe true positives but may also inlude false positives, i.e. sentenes inorretlyidenti�ed by the system as desribing a protein interation. Using TP, FN, andFP to denote the number of true positives, false negatives, and false positivesrespetively, reall and preision are de�ned asreall = TPTP+ FN preision = TPTP+ FPReall (also referred to as overage) indiates how many of the relevant instanesare retrieved. Preision (also referred to as auray) indiates how many of theretrieved instanes are relevant.To study the trade-o� between reall and preision we use a on�denethreshold p between 0 and 1 suh that an instane is retrieved i� the lassi-�er has a on�dene of at least p that the instane desribes a real proteininteration. The BayesNet lassi�er provides suh a on�dene value naturally,beause its output is a lass distribution probability for eah instane. Deisiontrees an also be easily adapted to produe a probabilisti output by ountingtraining examples at the leaf nodes. If a sentene that is being lassi�ed endsup at a leaf node, the on�dene of the lassi�er that it is a positive instane, isthe proportion of positive training examples to all training examples at that leafnode. When p is set to 1, a sentene is only retrieved if the lassi�er has absoluteon�dene that it desribes a protein interation. In this ase typially the prei-sion is high while the reall is low. Dereasing the threshold p allows to inreasethe reall at the ost of a drop in the preision. Figure 2 shows reall-preisionurves obtained by varying p from 1 to 0.As the �rst piture depits, both lassi�ers allow to obtain similarly nieresults for the LLL05 dataset, whih is a �rst indiation that we an make rea-sonable preditions about the ourrene of protein interations in sentenesbased solely on full parsing information. Several authors present results of theirprotein relation extration methods on the LLL05 dataset. However, sine oururrent approah is not aimed at identifying agent and target roles in the in-terations, we an only ompare our results with those methods that treat theinterations as symmetrial relations. The �rst piture in Figure 2 shows a resultfrom [7℄ depited by a � and orresponding to a reall of 85% and a preision of79%. One should keep in mind that the method from [7℄ uses hand-made rulesand a domain voabulary, while our approah does not employ any prespei-�ed knowledge. However, results show that our approah with a C4.5 lassi�erahieves results whih are very lose to the ones obtained by RelEx.Whereas the LLL05 dataset ontains only seleted sentenes from Medlineabstrats, the AImed dataset ontains full abstrats, posing a bigger hallengeto our approah. The seond piture in Figure 2 shows that C4.5 and BayesNetallow to obtain omparable results in terms of reall and preision. They bothoutperform the PAS-approah for whih a reall of 33.1% for a preision of 33.7%is reported in [17℄.Finally, we performed a ross dataset experiment using the AImed datasetfor training the lassi�er and the LLL05 dataset for testing. The orresponding



Fig. 2. Reall-preision harts



reall-preision urves for C4.5 and the BayesNet lassi�er are shown in the thirdpiture in Figure 2. While both datasets are independent (built for di�erent bi-ologial subdomains and by di�erent people), our approah shows good results.This indiates that the urrent approah is appliable to di�erent domains with-out alterations, although further investigation is needed to bak up this laim.The third piture also shows the reall-preision urve for the subsequene ker-nel method from [2℄ whih is a state-of-the-art shallow parsing based approahfor relation extration. Sine the approah was evaluated on a di�erent datasetin [2℄, we used the implementation provided by the authors8 and our datasetsto perform the experiment. The training is done with LibSVM9 on the AImeddataset and testing is done on the LLL05 dataset. The results show that thethree methods are omparable, with a slight preferene for our approah withthe BayesNet lassi�er, as it an keep up a very high preision of 84% for a reallof up to 60%.5 Conlusions and future workWhereas existing approahes for protein interation detetion typially rely onshallow parsing information, sometimes augmented with full parsing information,we presented an approah based solely on full parsing information. More inpartiular, we proposed a lean and generally appliable approah in whih foreah sentene a feature vetor is onstruted that ontains 12 features withinformation on the dependeny tree and 4 features with information on theparse tree of the sentene. Next we fed these feature vetors as inputs to a C4.5and a BayesNet lassi�er, as representatives of a rule indution and a statistiallearning algorithm. Using these standard data mining algorithms and no shallowparsing or lexial information whatsoever, we were able to obtain results whihare omparable with state-of-the-art approahes for protein relation mining. Thisresult is promising sine a method that uses only full parsing information doesnot depend on spei� interation keywords and is less a�eted by the size and/orthe heterogenity of the training orpus.As this paper presents work in progress, quite some ground remains to beovered, inluding a more omplete omparison with existing methods. Amongother things, it would be interesting to build an SVM model with our featurevetors and ompare the results with those of shallow and ombined parsingbased approahes that rely on kernel methods as well. Furthermore, we intendto look into deteting the agents and the targets of interations, whih wouldallow us to do an independent evaluation on the LLL05 dataset as intended bythe LLL hallenge. A �nal intriguing question is whether an augmentation withshallow parsing information ould inrease the performane of our approah.8 http://www.s.utexas.edu/�razvan/ode/ssk.tar.gz9 http://www.sie.ntu.edu.tw/�jlin/libsvm/
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