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Abstract—Rough set theory is a popular and powerful machine
learning tool. It is especially suitable for dealing with information
systems that exhibit inconsistencies, i.e. objects that have the same
values for the conditional attributes but a different value for the
decision attribute. In line with the emerging granular computing
paradigm, rough set theory groups objects together based on the
indiscernibility of their attribute values. Fuzzy rough set theory
extends rough set theory to data with continuous attributes, and
detects degrees of inconsistency in the data. Key to this is turning
the indiscernibility relation into a gradual relation, acknowledg-
ing that objects can be similar to a certain extent. In very
large datasets with millions of objects, computing the gradual
indiscernibility relation (or in other words, the soft granules)
is very demanding, both in terms of runtime and in terms of
memory. It is however required for the computation of the lower
and upper approximations of concepts in the fuzzy rough set
analysis pipeline. Current non-distributed implementations in R
are limited by memory capacity. For example, we found that
a state of the art non-distributed implementation in R could
not handle 30,000 rows and 10 attributes on a node with 62GB
of memory. This is clearly insufficient to scale fuzzy rough set
analysis to massive datasets. In this paper we present a parallel
and distributed solution based on Message Passing Interface
(MPI) to compute fuzzy rough approximations in very large
information systems. Our results show that our parallel approach
scales with problem size to information systems with millions of
objects. To the best of our knowledge, no other parallel and
distributed solutions have been proposed so far in the literature
for this problem.

I. INTRODUCTION

Rough set theory was introduced in the 1980s and has
since become a discipline in its own right [11]. A recent
scientometrics study showed an especially high rise in the
popularity of rough set analysis during the last decade, with
more than 80% of all the rough sets related papers in the Web
of Science published from 2004 to 2013 [18]. The application
domains of rough set theory span across all the traditional
tasks in data mining and analysis – including feature selection,
decision making, rule mining, and prediction. Free as well as

commercial tools to perform data mining based on rough set
analysis are available.1

In (fuzzy) rough set theory, the data at hand is represented
as an information system, consisting of objects described by
a set of attributes. Examples include an information system
of patients (objects) described by symptoms and lab results
(attributes), or an information system of online customers
(objects) described by their demographics and purchase his-
tory (attributes). Inconsistencies arise when objects in the
information system have the same attribute values but belong
to a different concept (i.e. a subset of objects in the data),
meaning that the available attributes are not able to discern the
concept. For instance, two patients with very similar symptoms
might still have been diagnosed with a different disease, and
out of two customers with very similar demographics and
purchase history, one might have clicked on an advertisement
while the other one did not. An important question is how
to take such inconsistencies that arise in training data into
account when building models to predict medical diagnosis for
patients, or click behavior of future customers. To tackle this
problem, Pawlak’s rough set theory [11] relies heavily on the
construction of the so-called lower and upper approximations
of concepts. These approximations are constructed based on
an indiscernibility relation induced by the attributes in the
information system. The original rough set theory could only
handle nominal (discrete) attributes and requires discretization
of continous attributes. Fuzzy rough set theory extends the
original rough set theory for information systems with con-
tinuous valued attributes, and detects gradual inconsistencies
within the data.

Data mining techniques based on fuzzy rough set theory
have been applied successfully in many domains, including
gene selection for microarray data [10], medical applications
[6], credit scoring analysis [2], demand prediction [14], risk
judgement [9], urban traffic flow [4], image classification

1See e.g. http://www.lcb.uu.se/tools/rosetta/, http://www.reduct.com/



[13], feature selection [5], and improvement of support vector
machines [3] and decision trees [19].

From a scalability and compute costs perspective, in many
data mining techniques based on fuzzy rough set theory, calcu-
lating the fuzzy rough lower and upper approximations is the
most demanding step. Current implementations in R [12] can
handle information systems of up to 100,000 objects and 1000
attributes, depending on the memory of the system they are ran
on. The biggest computational bottleneck is the construction of
the indiscernibility relation which, for a seemingly moderately
sized information system of 1 million objects, corresponds to
a similarity matrix with 1012 elements. The challenges are not
only in the runtime needed to compute each element (grows
linearly with increase in the number of attributes), but also in
how to deal with the computed elements in further downstream
calculations. Indeed, constructing the indiscernibility matrix is
not the end goal but only an intermediate step along the way
to obtain the fuzzy lower and upper approximations.

In this paper we propose the first distributed approach to
computing fuzzy lower and upper approximations. It is based
on the following two key insights:

• The construction of the indiscernibility matrix can be
carried out in a parallel manner, making each of K
compute nodes calculate n/K columns of the matrix
(with n the total number of objects in the information
system).

• The construction of the indiscernibility matrix does
not have to be finished before (partial) computation of
the lower and upper approximations can begin. Every
computed element of the indiscernibility matrix can
be processed further immediately, thereby eliminating
the need for storing the similarity matrix in memory
or on disk.

The combination of both these insights in a Message Passing
Interface (MPI) based distributed algorithm2 allowed us to
efficiently calculate fuzzy lower and upper approximations of
information systems with millions of rows, while a state of the
art non-distributed implementation in R [12] could not handle
30,000 rows on the same hardware. The main problem with
this implementation in R appears to be the inefficient memory
usage, in particular the fact that the entire indiscernibility
matrix is stored in memory.

The remainder of this paper is structured as follows. In
Section II we briefly recall preliminaries about fuzzy rough
set theory and we point out scale issues. In Section III we
explain how the problem that we solve in this paper is different
from other problems in rough set theory for which parallel or
distributed algorithms have been developed in the past. To the
best of our knowledge, we are the first to present a distributed
approach to calculate fuzzy lower and upper approximations,
a problem that is fundamentally different in nature from
problems which have been studied before. In Section IV we
describe our distributed method in detail. Through a series of
experiments, in Section V we show that the proposed method
scales well on large information systems with millions of
objects. Conclusions are presented in Section VI.

2Implemented in C and executed on Intel MPI. All code is available on https:
//github.com/WebDataScience/ParallelFuzzyRoughSetApproximationonMPI/

II. SCALE ISSUES IN FUZZY ROUGH SET ANALYSIS

In fuzzy rough set analysis, the data is represented as an
information system (X,A), where X = {x1, . . . , xn} and
A = {a1, . . . , am} are finite, non-empty sets of objects and
attributes, respectively. The values of the attributes for the
instances can be represented in an n×m matrix Q where qi,t
(i ∈ {1, . . . , n} and t ∈ {1, . . . ,m}) is the value of attribute
at for instance xi. The attributes a ∈ A can be categorical or
quantitative. Fuzzy rough set analysis [7] considers a notion
of gradual indiscernibility between instances, modelled by a
binary fuzzy relation that can be represented by an n×n matrix
R. The value ri,j is the degree of indiscernibility or similarity
between the objects xi and xj (i, j ∈ {1, . . . , n}). The value of
ri,j ranges between 0 (xi and xj are completely dissimilar) and
1 (xi and xj are fully indiscernible). The fuzzy indiscernibility
relation matrix R can be derived from the information system
(X,A) by averaging per-attribute similarities of the objects:

ri,j =
1

m

∑
t∈{1,...,m}

ft(qi,t, qj,t). (1)

The function ft (t ∈ {1, . . . ,m}) can be defined in many ways
and differs for different types of attributes. In the experimental
evaluation part of this paper we assume that all attributes
are continuous, and therefore we use a normalized Manhattan
distance based function that is the same for all attributes:

ft(qi,t, qj,t) = 1− |qi,t − qj,t|
range(at)

(2)

with the range of attribute at defined as the maximum minus
the minimum value at takes in the information system.

In addition to the information system (X,A), a fuzzy
concept C is given in the form of an n × 1 vector. For each
i ∈ {1, . . . , n}, the value ci denotes the degree to which object
xi belongs to concept C. There may be several such fuzzy
concepts to which every instance i can belong simultaneously;
for example height of a person as tall and short. For brevity of
explanation we focus on a single concept C. These values ci
of C range between 1 (xi completely belongs to the concept
C) and 0 (xi does not belong at all to the concept C). The
lower and upper approximations of a fuzzy concept C are
defined w.r.t. an implicator and a t-norm respectively, which
are relaxations of the implication and conjunction operators
from boolean logic. In the experimental evaluation part of this
paper we use the Kleene-Dienes implicator and the minimum
t-norm, respectively defined as x →̃ y = max(1 − x, y) and
x ∧̃ y = min(x, y), for x and y in [0, 1]. For more examples
of fuzzy logical operators we refer to Bede [1]. For each
instance xj (j ∈ {1, . . . , n}) its membership values to the
lower and upper approximation of C (also denoted by lj and
uj respectively) are respectively defined as:

lj = min
i∈{1,...,n}

(rj,i →̃ ci) (3)

uj = max
i∈{1,...,n}

(rj,i ∧̃ ci). (4)

This means that the membership value lj of an instance xj

to the lower approximation of C is high if instances that are
highly similar to it belong to a great extent to the concept C.
On the other hand, the membership value uj of an instance xj

to the upper approximation of C is high if there exist instances
that are similar to xj that also strongly belong to C.



The problem that we address in this paper is: given a
very large information system (X,A) with n instances and
m attributes, and a fuzzy concept vector C, compute the cor-
responding lower and upper approximation vectors L and U .
The theoretical time complexity needed to calculate the fuzzy
rough lower and upper approximation membership values for
all instances is O(n2m), assuming that the per-attribute simi-
larity of two objects (2) can be computed in constant time. This
demonstrates the challenge to calculate these approximations
for information systems with a large number of instances. Even
for a dataset with 1 million instances, which seems like a fairly
moderate amount, 1 trillion per-attribute similarities need to be
computed. Moreover, a straightforward implementation would
calculate and store the similarity matrix, which can cause
memory problems as its size is O(n2). If each similarity value
is stored using 8 bytes; which is the typical size of a double in
most architectures, then for a dataset with 1 million instances,
the similarity matrix would require 8TB of memory.

III. RELATED WORK

To the best of our knowledge, we are the first to present a
distributed approach to calculate the fuzzy rough lower and
upper approximations in an information system. In [15], a
parallel attribute reduction algorithm based on fuzzy rough set
theory was proposed, but this algorithm is based on mutual
information, and does not calculate the fuzzy rough lower and
upper approximations explicitly. Additionally, in [8], [17], [20]
rough set approaches to handle big data are presented, without
explicitly calculating the lower and upper approximations. In
addition, these approaches only deal with non-fuzzy rough
sets; a significant distinction.

The work of Zhang et al. is more closely related to
the work presented in this paper. These researchers have
worked on parallel approaches to calculate the lower and upper
approximations in traditional (non-fuzzy) rough set theory.
For instance, in [21], the authors present a MapReduce based
approach to compute the lower and upper approximations in a
decision system, i.e. an information system with an additional
categorical decision attribute (class) that is used to approach
classification problems. Calculating the equivalence classes,
both w.r.t. the conditional attributes and the decision attributes,
is carried out in parallel, as well as calculating the final
lower and upper approximations of all decision classes. In
[22], different runtime systems to use these approximations
for knowledge acquisition are compared. In [16], an approach
to calculate the (non-fuzzy) positive region, i.e. the union of
the lower approximation of all classes is proposed.

Our work differs fundamentally from these approaches as
calculating the fuzzy rough lower and upper approximations
requires calculating the fuzzy similarity matrix, while the
non-fuzzy lower and upper approximations are based on an
equivalence relation, that can be calculated easily in one
MapReduce iteration. Indeed, the maps divide chunks of
objects in equivalence classes (groups with the same attribute
values) and these equivalence classes are merged in the reduce
step. Unfortunately, this strategy cannot be used for calculating
the fuzzy similarity between objects, as all objects need to be
compared against every other for each attribute value. This
poses additional challenges when calculating the fuzzy rough

and lower approximations, as one MapReduce round does not
suffice to calculate the fuzzy similarity matrix.

The approach in [15], [22] is extended in [23] for com-
posite rough sets, where attributes from different types can be
handled. This approach seems to be suitable for our purposes
at first sight, as continuous attributes can be handled. However,
these composite rough sets require crisp equivalence relations
for each attribute type, which means that discretization is
needed to handle the continuous attributes. Our approach uses
a fuzzy similarity relation to handle continuous attributes, and
as a result there is no information loss that is usually associated
with discretization.

IV. COMPUTING FUZZY ROUGH APPROXIMATIONS IN
PARALLEL

Our approach assumes the availability of a cluster with a
master node and K slave nodes. The general idea is to equally
distribute the computational load over the available slave nodes
such that each slave node performs part of the fuzzy rough
set approximations computation. Given an information system
with n instances (rows), each slave node processes d nK e of
the rows in the dataset, thereby generating d nK e columns of
the similarity matrix, and computing d nK e of the n values that
ultimately need to be aggregated per each value in the lower
and the upper approximation (cfr. Equations (3) and (4)).

The flow of the overall approach is depicted in Figure 1.
Computations happen on the master level (left) and on K slave
nodes (right, with K = 2 in the picture). Each slave node k
(k ∈ {1, . . . ,K}) is assigned a horizontal partition Pk of the
data, for which it will do computations. However, it is assumed
that the entire data is available to each of the K slave nodes.
That is, the data is not partitioned over the slave nodes but the
computations are. All Pk partitions have d nK e rows (except for
the last slave node which has a partition with the remaining
rows, which is possibly less than d nK e).

The approach is divided into two stages – data preparation
and data processing – which we describe in more detail below.
In the data preparation stage, data is made available and ready
to be processed by the slave nodes. In the data processing
stage, upper and lower approximations are computed using
the prepared data from the previous stage.

A. Data Preparation

a) Data broadcasting: At the very beginning of the data
preparation stage, the master node has the instance-attribute
value matrix Q as well as the class or concept vector C, each
in a separate file. Before the MPI program starts, a Linux script
is run at the master node to distribute the matrix Q over the
slave nodes so that each slave node has a full copy of Q.
This requires that each slave node has enough disk space to
store the whole dataset file. By doing this, we are emulating a
parallel file system. As will become clear below, even though
every slave k (k ∈ {1, . . . ,K}) has and needs a full copy of
Q, it is only responsible for the computations on its assigned
partition Pk of d nK e rows of Q.

After the matrix Q is sent to all slave nodes, the Linux
script triggers the MPI program to run on all slave nodes in
addition to the master node. Once started, the master node



Fig. 1. This figure summarizes the overall flow of our distributed approach to computing fuzzy lower and upper approximations. The approach has two stages,
namely data preparation and data processing. The data preparation stage starts with a Linux script that distributes the dataset, i.e. the instance-attribute matrix,
to all slave nodes. Then the master node loads and broadcasts the concept or class vector. After that, each slave node computes the minimum and maximum
values of each attribute for a subset of the rows, and then the master node reduce the minimum and maximum vectors created by the slaves into two final
vectors. Then the master computes the attribute ranges given the minimum and maximum vectors and finally broadcasts the ranges vector. This concludes the
data preparation stage which gets the data ready to be processed. At the start of the data processing stage, each slave node has the dataset, the ranges vector and
the class vector as input, uses these to produce two intermediate vectors: one for the upper approximation and another one for the lower approximation. Finally
the intermediate vectors get reduced at the master producing the final upper and lower approximation vectors. At this point, all slave nodes terminate while the
master saves the final approximation vectors to disk and then terminates.

loads the class vector C from the disk and broadcasts it to all
slave nodes.

b) Attribute range computation: After that, the range
of every attribute – which is needed in the denominator of
Equation (2) – gets computed in a parallel way. To this end,
each slave node k (k ∈ {1, . . . ,K}) creates two vectors mink

and maxk, each of size m, with m the number of attributes
in the information system. The objective of these two vectors
is to keep track of the minimum values and maximum values
of each attribute in the dataset seen so far. Recall that each
slave node k is responsible for a partition Pk of instances.
Below, we denote the the index set of these instances (rows)
by Ik. Initially, within each slave node k, all values in mink

are set to +∞ and all values in maxk are set to −∞. Then,
the slave node k iteratively goes through all instances i ∈ Ik
in its partition Pk and updates the minimum and maximum
values for all attributes t ∈ {1, . . . ,m} so that

mink
t ← min(qi,t,mink

j ) (5)

maxk
t ← max(qi,t,maxk

j ) (6)

After each slave k is done populating its mink and maxk, they
get reduced to two vectors minf and maxf at the master node

so that, for t ∈ {1, . . . ,m},

minf
t = min

k∈{1,...,K}
mink

t (7)

maxf
t = max

k∈{1,...,K}
maxk

t (8)

Then, the master node computes the range of each attribute
and stores the result in the ranges vector so that, for t ∈
{1, . . . ,m},

ranget = maxft −minf
t (9)

Finally the master node broadcasts the ranges vector to all
slave nodes.

B. Data Processing

In this stage, each slave node k (k ∈ {1, . . . ,K}) has the
matrix Q, the class vector C and a vector with the range of
each attribute. Recall that each slave k is responsible for a
horizontal partition Pk of Q, and that we denote the index set
of these instances by Ik. The goal of our algorithm is a lower
approximation vector L and an upper approximation vector U ,
with their values lj and uj as defined in Equations (3) and (4),



for j ∈ {1, . . . , n}. Note that (3) and (4) can be rewritten as

lj = min
k∈{1,...,K}

min
i∈Ik

(rj,i →̃ ci) (10)

uj = max
k∈{1,...,K}

max
i∈Ik

(rj,i ∧̃ ci). (11)

The computation of

lkj = min
i∈Ik

(rj,i →̃ ci) (12)

uk
j = max

i∈Ik
(rj,i ∧̃ ci) (13)

for k ∈ {1, . . . ,K}, can be done fully in parallel on each of
the K slave nodes. Since we need these values for all j ∈
{1, . . . , n}, this involves each slave node k constructing the
d nK e columns from the similarity matrix that correspond to the
index set Ik. However, during calculation of (12) and (13), each
value rj,i of the similarity matrix is immediately combined
with ci, eliminating the need to store (entire columns of) the
similarity matrix.

In our implementation, at the beginning of the data pro-
cessing stage, the master node is waiting for each slave node
to complete its computations and produce lkj and uk

j , for all
j ∈ {1, . . . , n}. In order for a slave node to do that, it loads
its assigned partition Pk and keeps it in memory throughout
the execution of the program. In addition, for each loaded row
qi,. in Pk (i ∈ Ik), each value qi,t (t ∈ {1, . . . ,m}) in that
row gets divided by rangest, i.e. by the previously computed
range of the attribute at. Then, the slave node loops over each
of the rows in the matrix Q that it has on disk and does the
following (we can refer to this loop as the outer loop; it ranges
over j ∈ {1, . . . , n}):

1) Read row qj,. from the dataset file, and divide each
value qj,t (t ∈ {1, . . . ,m}) in that row by rangest,
i.e. by the previously computed range of the attribute
at.

2) For each row qi,. in Pk, the following steps are carried
out (we can refer to this as the inner loop; it ranges
over i ∈ Ik):

a) Given row qj,. from the dataset file and row
qi,. from Pk, compute rj,i as defined by
equation 1. Note that we do not need to
divide by the range here because this has
been taken care of at an earlier step.

b) Compute the values rj,i →̃ ci and rj,i ∧̃ ci.
c) Update the values lkj and uk

j :

lkj ← min(lkj , rj,i →̃ ci)

uk
j ← max(uk

j , rj,i ∧̃ ci)

Once all the K slave nodes have completed the above steps,
the master node aggregates all computed values into

lj = min
k∈{1,...,K}

lkj (14)

uj = max
k∈{1,...,K}

uk
j (15)

for all j ∈ {1, . . . , n}. These vectors L and U represent
the final lower and upper approximations respectively. At this
point, all slave nodes terminate while the master node is saving
these two vectors to disk and then terminates.

Pseudocode for the master and slave programs is presented
in Algorithm 1 and 2. The execution of the outer loop, i.e. lines
26-36 in Algorithm 2, can be optimized by running multiple
iterations in parallel by creating a separate thread for each
iteration of the loop. The number of concurrent iterations is
determined by a parameter passed to the program.

Algorithm 1 Master Program
1: INPUT: pathToClassvector, m, n, K
2: DECLARE: ranges,min,max, l, u
3: classvector ← loadFromFile(pathToClassvector)
4: broadcast(classvector)
5: ReduceFromSlaves(min1, . . . ,minK ,max1, . . . ,maxK)
6: for t from 1 to m do
7: maxf

t ← maxk∈{1,...,K} maxkt
8: minf

t ← mink∈{1,...,K} minkt
9: end for

10: EndReduce
11: for t from 1 to m do
12: ranget ← maxft −minft
13: end for
14: broadcast(range)
15: wait for slaves to finish
16: ReduceFromSlaves(l1, l2, . . . , lK , u1, u2, . . . , uK)
17: for j from 1 to n do
18: lj ← mink∈{1,...,K} l

k
j

19: uj ← maxk∈{1,...,K} u
k
j

20: end for
21: EndReduce
22: save L and U to disk
23: Terminate

While the main contribution of this work is the MPI im-
plementation, we did consider using the MapReduce paradigm
using Apache Spark to develop a comparative solution. To this
end, we viewed the indiscernibility matrix R as originating
from a matrix-multiplication-like combination of the matrix
Q with its transposed matrix QT , and similarly, we viewed
the lower and upper approximation vectors L and U as
matrix-multiplication-like combinations of R with C (with
the element-wise multiplication replaced by computations for
the similarity values or fuzzy logical operators respectively).
Following a traditional MapReduce setting common for large
matrix operations, we split matrix Q into blocks using both
horizontal and vertical partitioning logic. In doing so we
caused the Spark implementation to be severely memory
constrained while storing the (key, value)-pairs of the indis-
cernibility matrix and due to the number of RDDs resulting
due to the block partitions. In a future work we hope to address
this issue further.

V. EXPERIMENTAL RESULTS

A. Experimental setup

We tested the scalability of our distributed algorithm on 11
synthetically generated datasets, with the number of instances
(rows) varying from 10,000 to 10 million, and the number
of attributes (columns) varying from 10 to 50. All attribute
values are randomly generated numbers between 0 and 1000.
The concept vectors are generated in the same way, but with
randomly generated values between 0 and 1 to comply with



Algorithm 2 Slave Program
1: INPUT: dataset, m, n, K
2: partitionSize ← 1 + (n/K)
3: DECLARE: mink,maxk, lk, uk

4: initialize(mink,+∞)
5: initialize(maxk,−∞)
6: initialize(lk, 1)
7: initialize(uk, 0)
8: startRow ← (k − 1) · partitionSize
9: endRow ← startRow + partitionSize

10: receive broadcasted classvector
11: for i from startRow to endRow do
12: qi,. ← getRowFromDataSet(dataset,i)
13: for t from 1 to m do
14: maxkt ← max(maxkt , qi,t)
15: mink

t ← min(minkt , qi,t)
16: end for
17: end for
18: reduce maxk and maxk to the master node
19: receive broadcasted ranges
20: for i from startRow to endRow do
21: qi,. ← getRowFromDataSet(dataset,i)
22: for t from 1 to m do
23: qi,t ← qi,t/ranget
24: end for
25: end for
26: for i from 1 to n do
27: qj,. ← getRowFromDataSet(dataset,i)
28: for j from 1 to m do
29: qj,t ← qj,t/ranget
30: end for
31: for i from startRow to endRow do
32: simValue ← similarity(qj,., qi,.)
33: lkj ← min(lkj , simValue →̃ ci)
34: uk

j ← max(uk
j ,min(simValue ∧̃ cj , ci))

35: end for
36: end for
37: reduce uk and lk to the master node
38: Terminate

Node Cores/Node Speed/Core (GHz) Memory (GB)

MPI master 16 2.67 16
slave nodes 1 to 7 48 2.70 62

TABLE I. HARDWARE SPECIFICATIONS OF THE CLUSTER

the definition (see Section II). As an implicator and t-norm
we used respectively the Kleene-Dienes implicator and the
minimum t-norm (see Section II).

We ran the experiments on an Intel cluster of 7 slave nodes
with a total of 336 cores and 434GB of RAM. The CPUs used
in the cluster are 64-bit Intel(R) Xeon(R) CPUs. In addition,
the cluster includes an additional node that was used as a
master node. Table I provides the specifications of each node.
We compiled and ran the MPI code on Intel MPI 4.3. For the
non-distributed R version, we used the 3.1 release of R and
we ran the code on a single node of the cluster.

rows attributes threads MPI (7 nodes) R (1 node)
10000 10 46 1s 105s
10000 50 46 1s 365s

TABLE II. COMPARISON OF EXECUTION TIME (IN SEC) BETWEEN OUR
DISTRIBUTED MPI BASED ALGORITHM AND THE NON-DISTRIBUTED

ALGORITHM FROM THE “ROUGHSETS” PACKAGE IN R [12].
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Fig. 2. Execution time (in sec) for a varying number of threads per compute
node. The experiments are performed on a cluster with 1 master node and 7
slave nodes, and on two different datasets (i.e. a dataset with 1 million rows
and 10 attributes, and a dataset with 1 million rows and 50 attributes). There
is a linear decrease in execution time of the MPI program as the number of
threads per node increases.

B. Results

We first used the implementation that comes with the
“RoughSets” package in R [12], and as mentioned before
we tested its limitations on one node. We could not find a
distributed R version for fuzzy rough sets. This R implemen-
tation was only able to handle a dataset upto 30000 rows
and 10 attributes likely because of inefficient memory usage,
i.e. the fact that the algorithm keeps the entire indiscernibility
matrix in memory at once. Table II compares the execution
time of our distributed MPI based algorithm with the non-
distributed implementation in R on a small dataset with 10,000
rows. Execution times of the MPI algorithm for datasets with
100,000, 1 million and 10 million rows are presented further
in this section; no corresponding execution times for R are
presented over these larger datasets because, as explained
above, the R package ran out of memory.

W.r.t. our distributed MPI algorithm, we conducted four
sets of experiments to observe factors that affect the scalability
of our approach. Four experiments conducted focus on dataset
size: number of instances, number of attributes, number of
compute nodes, and number of threads per compute node. Each
experiment was conducted thrice and average execution time
is systematically reported.

The first set of experiments investigates the effect of an
increase in the number of threads per compute node. Recall
that our implementation is multithreaded for the main outer
loop in the slave program, i.e. lines 26-36 in Algorithm 2.
Since each iteration of this loop can be executed in parallel
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Fig. 3. Execution time (in sec) for a varying number of threads per compute
node, with the number of threads approximately equal to the number of
available cores. The experiments are performed on a cluster with 1 master
node and 7 slave nodes, and on a dataset with 1 million rows and 10 attributes.
The best performance is achieved for 46 threads.

and independently of the others, we expect to see the overall
runtime decrease when more threads are used. Figure 2 val-
idates this: the execution time decreases almost linearly with
an increase in the number of threads. Comparing both curves
in Figure 2 indicates that a change in the number of attributes
from 10 to 50 does not change the behaviour of the curve,
but only shifts the values. Focus on execution times with the
number of threads approximately equal to the number of cores
available per compute node (48 - a thread per core), and we
notice that the best performance is achieved for 46 threads
(see Figure 3) where two out of the 48 threads are given for
system tasks. Hence, we fixed the number of threads to 46 for
all other experiments.

The second set of experiments examines the effect of the
number of available compute nodes, while keeping everything
else constant. Figure 4 shows clearly that the overall execution
time decreases as the computation is distributed over more
nodes. Even though the magnitude of the decline becomes
less as the number of compute nodes grows, Figures 2 and
4 both show that the computation of fuzzy lower and upper
approximations has a strong scaling issue. The use of more
hardware (nodes, threads) improves the runtime. Also note in
Figure 4 that even with 1 slave node our algorithm is able
to efficiently process a dataset with 1 million rows, unlike the
”RoughSets” package in R mentioned above [12] which would
not allow us to get beyond 30,000 rows.

The final two sets of experiments examine the effect of
the size of the dataset on the execution time. Figure 5 shows
that the execution time increases approximately quadratically
with the number of rows. In addition, as expected, a higher
number of attributes causes to MPI program to run slower
but it does not affect the general shape of the curve. Finally,
Figure 6 shows that, as expected, the execution time of the
MPI program grows approximately linearly with the number
of attributes.
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Fig. 4. Execution time (in sec) for a varying number of nodes. The
experiments are performed on a cluster with 1 master node and 1 to 7 slave
nodes, and on two different datasets (i.e. a dataset with 1 million rows and 10
attributes, and a dataset with 1 million rows and 50 attributes). The number
of threads is kept constant at 46. The runtime decreases with the increase
in number of compute nodes. Even when only 1 slave node is available, our
algorithm efficiently computes lower and upper approximations of a concept
vector with 1 million entries.
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Fig. 5. Execution time (in sec) for a varying number of rows in the dataset.
The experiments are performed on a cluster with 1 master node and 7 slave
nodes, and on datasets with respectively 10,000, 100,000, 1 million and 10
million instances and 10 or 50 attributes. The number of threads is kept
constant at 46. The execution time of the MPI program grows approximately
quadratically in terms of the number of instances in the dataset.

VI. CONCLUSION

The operations involved in computing lower and upper
approximations of concept vectors are at the core of many
machine learning applications even other than fuzzy rough set
theory. Current R-based, non-distributed implementations of
such operations described in this paper are not scalable and
bounded by memory available to keep the entire similarity
matrix in-memory. The main motivation of our work is this
significant computational bottleneck of construction of the
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indiscernibility relation, both in terms of compute time and
memory requirements. In this paper we proposed a distributed
algorithm for the computation of fuzzy rough approximations
based on two key insights: (1) the construction of the indis-
cernibility matrix can be carried out in a parallel manner, which
allows to reduce the compute time by leveraging multiple
compute nodes and threads; and (2) every computed element
of the indiscernibility matrix can be processed further imme-
diately, thereby eliminating the need for storing the (typically
large) similarity matrix in-memory or on-disk. We presented
a Message Passing Interface (MPI) based implementation of
this approach.

In a series of experiments on a cluster with 7 slave nodes,
each with 48 cores and 62GB memory, we have shown that our
approach scales well. In line with what can be expected from
the theoretical runtime, we observed that the overall execution
time grows approximately quadratically in the number of in-
stances, and approximately linearly in the number of attributes
in the dataset. Even when only 1 slave node is used, our
algorithm can easily process a dataset with 1 million rows.
Furthermore, our approach takes advantage of the availability
of multiple cores and threads, demonstrating a clear decrease in
execution time as the number of available slave nodes increases
from 1 to 7, and an even further decrease when the number of
threads per node increases from 1 to 46.

To the best of our knowledge, the approach we presented in
this paper is the first distributed solution for the computation
of lower and upper approximations for continuous valued large
datasets in fuzzy rough set theory so far.
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