
Information Sciences 625 (2023) 521–535
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Fuzzy rough nearest neighbour methods for detecting emotions,
hate speech and irony
https://doi.org/10.1016/j.ins.2023.01.054
0020-0255/� 2023 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
Olha Kaminska a,⇑, Chris Cornelis a, Veronique Hoste b

aComputational Web Intelligence, Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
b LT3 Language and Translation Technology Team, Ghent University, Ghent, Belgium
a r t i c l e i n f o

Article history:
Received 13 May 2022
Received in revised form 5 January 2023
Accepted 6 January 2023
Available online 10 January 2023

Keywords:
Natural language processing
Emotion detection
Fuzzy rough sets
Text embeddings
a b s t r a c t

Due to the ever-expanding volumes of information available on social media, the need for
reliable and efficient automated text understanding mechanisms becomes evident.
Unfortunately, most current approaches rely on black-box solutions rooted in deep learn-
ing technologies. In order to provide a more transparent and interpretable framework for
extracting intrinsic text characteristics like emotions, hate speech and irony, we propose to
integrate fuzzy rough set techniques and text embeddings. We apply our methods to dif-
ferent classification problems originating from Semantic Evaluation (SemEval) competi-
tions, and demonstrate that their accuracy is on par with leading deep learning solutions.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

The exponential growth of social media has created various novel ways of communication. A significant part of online
content is formed by textual information, which gives rise to diverse tasks within the data science branch of Natural Lan-
guage Processing (NLP). They include customer feedback analysis, sentiment interpretation, topic detection, as well as emo-
tion detection, which is one of the main topics considered in this paper, and which presents itself in different shapes:

� Classification of customer comments, based on whether they express an angry, happy, or disappointed emotion, see e.g.
[1].

� Aspect-based sentiment or emotion analysis, see e.g. [2]. For example, a customer could claim that ‘‘the battery of the
phone works well”, which expresses a positive opinion (satisfaction) about the aspect of ‘‘battery”. At the same time, that
same customer could also complain that ‘‘the memory is too limited”, expressing a negative opinion about the aspect of
‘‘memory” and showing disappointment.

� Emotion intensity classification, where ordinal labels represent different levels of a given emotion. For example, in [3], the
authors labelled a dataset for sentiment with scores from 0 (very negative) to 1 (very positive). They also labelled the
same data for various emotions (fear, anger, happiness, etc.), ranging from 0 (absence of the emotion) to 1 (extreme inten-
sity of the emotion).

Apart from emotion detection, in this paper we also consider two other important subjective language classification
tasks:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.01.054&domain=pdf
https://doi.org/10.1016/j.ins.2023.01.054
https://doi.org/10.1016/j.ins.2023.01.054
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
� Hate speech detection. The term ‘‘hate speech” is a broad concept that includes all kinds of negative comments targeted to
insult someone based on some aspect (gender, race, religion, political beliefs, etc.) Most social networks provide auto-
mated hate speech detection and cleaning tools, and research in this area is very active [4].

� Irony (or sarcasm) detection. Irony is often identified as a trope or figurative language use where the actual meaning is
different from what is literally enunciated [5]. Unfortunately, detecting irony is complicated, even from a human perspec-
tive, as it can be expressed in a variety of ways, using metaphoric language or humour, and very often contextual infor-
mation or facial expression information is needed to distinguish between ironic and non-ironic utterances. It makes irony
detection a very challenging task, both to label such datasets and to train classification models [6].

Cutting-edge solutions to the above problems are typically based on deep learning (DL). For example, Bidirectional Enco-
der Representations from Transformers (BERT) by Devlin et al. [7] is a state-of-the-art language model used for various NLP
tasks. While such solutions are generally able to reach high prediction accuracy, a downside to their use is that they are
black-box solutions and hence suffer from a lack of explainability regarding the way the predictions are obtained. Therefore,
a growing need emerges for explainable models that can identify e.g. why a particular text was labelled with a particular
emotion intensity level and which patterns can be identified. Inspired by the fuzzy nature of textual data, in this paper,
we consider the usage of the fuzzy-rough nearest neighbour (FRNN) based methods proposed in [8]. Fuzzy rough set
approaches have been used successfully in various machine learning applications [9], including fuzzy decision trees [10],
learning from imbalanced data [11], feature and instance selection [12], etc.

An advantage of instance-based methods like those based on FRNN is that they provide a more understandable architec-
ture with interpretable results by virtue of the concept of graded similarity. Concretely, new text fragments are paired with
similar extracts from training data, providing immediate and intuitive clues as to why a given decision was made. While
FRNN-based methods initially provide less accurate predictions than DL approaches, we show in this paper that with proper
feature engineering and ensemble construction, we can obtain results on the same level as state-of-the-art deep learning
approaches. In particular, we apply our methods to the three classification tasks introduced above:

� For emotion intensity classification, we use the data provided by the SemEval-2018 Task 1 ‘‘EI-oc: Affect in Tweets for
English”1, where for four emotions (anger, joy, sadness, and fear), the organizers provided a collection of tweets with inten-
sity labels (ranging from 0, which corresponds to ‘‘no emotion can be inferred”, to 3, ‘‘a high amount of emotion can be
inferred”).

� For hate speech detection, we consider two different datasets. The first one was released in the context of SemEval 2019
Task 6: ‘‘OffensEval: Identifying and Categorizing Offensive Language in Social Media”2. In subtask A, ‘‘Offensive language
identification”, the authors presented a dataset of more than 13,000 English tweets labelled as offensive or not. Offensive
language was defined as language aimed to hurt someone’s feelings, increase the level of anger and start arguing3. This def-
inition illustrates that the concepts of offensive language and hate speech are very similar. The second dataset originates
from SemEval 2019 Task 5, ‘‘Shared Task on Multilingual Detection of Hate”4. We consider English tweets from subtask A,
‘‘Hate Speech Detection against Immigrants and Women”, a binary classification task with 9,000 training and 1,000 devel-
opment instances.

� For irony detection, we use the dataset from SemEval-2018 Task 3, ‘‘Irony detection in English tweets”5 and solve subtask
A, which is a binary classification issue: is a given tweet ironic or not? The authors gathered the dataset of nearly 4,000 Eng-
lish tweets using three hashtags: #irony, #sarcasm, and #not. After manually labeling the data, the authors gathered a sim-
ilar number of non-ironic tweets to obtain a balanced dataset.

The remainder of this paper has the following structure: Section 2 recalls current research efforts related to the SemEval
tasks and to interpretability for text analysis. In Section 3, we discuss the methodological choices we took regarding data
preprocessing; tweet embeddings, classifiers and evaluation measures. In Section 4, we train our models, first detecting
the best individual setup for each embedding in Section 4.1, followed by the results for ensembles in Section 4.2. In Section 5,
we apply the best performing setups to the test data, discuss the results and provide an error analysis. Finally, in Section 6 we
formulate the main conclusions of our study and discuss possible directions for future work.

The code for this paper can be found in the GitHub repository6.
1 https://competitions.codalab.org/competitions/17751
2 https://competitions.codalab.org/competitions/20011
3 https://aclawgroup.com.au/criminal-law/offences/offensive-language/
4 https://competitions.codalab.org/competitions/19935
5 https://competitions.codalab.org/competitions/17468
6 https://github.com/olha-kaminska/frnn_emotion_detection/tree/emotions_irony_hatespeech

522



O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
2. Related Work

2.1. SemEval competitions: tasks and winning solutions

As mentioned before, we apply our methods to three different classification problems originating from the Semantic Eval-
uation (SemEval) competition. For SemEval-2018 Task 1, Mohammad et al. [13] collected the data using the Twitter API with
a vocabulary of keyword hashtags related to different emotions (for example, ‘‘annoyed”, ‘‘panic”, ‘‘happy”, etc.). As for any
SemEval competition, the organizers used a leaderboard. For the emotion intensity task, the evaluation metric was Pearson
Correlation Coefficient (PCC), evaluated on a set of unseen test tweets. The winning solutions described in [13] are mainly
based on DL methods. The first-placed team [14] proposed an ensemble of Random Forest and XGBoost based on embedding
vectors, while the second-placed team [15] presented a solution with LSTM neural networks and transfer learning tech-
niques. The third-placed team [16] used an ensemble of models with Gated-Recurrent-Units (GRU) and a CNN as an attention
mechanism. Zampieri et al. [17] formulated the SemEval 2019 Task 6, using the Offensive Language Identification Dataset
(OLID) from [18]. In this paper, we focus on the binary classification task to decide whether a tweet is offensive or not.
The authors reported that 70% of winning solutions were based on DL and that the three best ones for this subtask [19–
21] propose fine-tuned BERT-based solutions. Task 5 from the same SemEval 2019 competition, proposed by Basile et al.
[22], considered a more specific type of hate speech, targeted mostly against women and immigrants. In this paper, we con-
sider the binary classification subtask, for which the authors provided two baselines: one assigns the most frequent training
label to all test instances, and the second is based on an SVM model with TF-IDF text representation. Indurthi et al. [23]
obtained the best result using an SVM model with Universal Sentence Encoder (USE) embeddings. While the second team
did not publish their solution, the third-placed team [24] used a capsule network with training stacked Bidirectional Gated
Recurrent Units (BiGRUs) including fastText word embeddings. Finally, for irony detection, Van Hee et al. [25] released a
dataset of tweets for irony detection in the framework of SemEval-2018 Task 3. They also provided two baselines: one with
random labels assigned and the second based on an SVM model with TF-IDF features. The best solution for binary irony clas-
sification [26] proposed densely connected LSTMs that use different features, such as text embeddings, sentiment, and syn-
tactic features, while the runner-up [27] used recurrent neural networks (BiLSTM) on both word and character levels, and the
third place system [28] combined SVM and logistic regression (LR) into an ensemble with averaged tweet embeddings as
features. As can be concluded from this overview, the recent boost of transformers in NLP significantly impacted the solu-
tions for the considered tasks. The majority of the systems use deep neural networks or BERT transformers. As such, they
remain black boxes that are unable to justify their predictions. Our proposed approach, therefore, aims to provide more
explanation for the predicted labels. We do not avoid DL fully, since we still use text embedding techniques that were
pre-trained using neural networks or transformers, but as classification methods, we consider more interpretable nearest
neighbour-based approaches. Previously, in [29] we explored the efficiency of the weighted k Nearest Neighbour (wkNN)
classifier for the emotion detection task. In this paper, we will replace wkNN by the fuzzy-rough nearest neighbour (FRNN)
classifier, which is a more flexible instance-based method that uses the neighbour concept in a more intricate way.
2.2. Interpretability in text analysis

We can discern two main aspects in model interpretability for text analysis [30]. The first one defines the ‘‘level” of
explainability: local methods deliver an explanation for a single prediction, and global ones provide an explanation for
the whole prediction model. In this paper, we will be concerned with local predictions. From another point of view, we
can define two types of interpretability approaches: post hoc interpretation and self-explanatory models. As an example
of the former, we can consider Perturbed Masking [31] which uses Masked Language Modeling (MLM) to calculate a partic-
ular word’s impact on the prediction results for another word. Another example of a post hoc method is LIME (Local Inter-
pretable Model-agnostic Explanations, [32], which explains the results of a classifier’s predictions by approximating the
learning process locally with an interpretable model.

Most current explainable models in NLP belong to the self-explanatory category. For example, Variational Word Masks
(VMASK) [33] make the model focus on the most important words during the prediction-making process. We can also
use attention weights from the model to analyze its predictions, as was done e.g. by [34], who propose a Hierarchical Atten-
tion Network (HAN) for a document classification task. Their solution includes an attention mechanism with two levels
(word and sentence level) and provides a clear visualization for the human eye, where the most meaningful words and parts
of a sentence are highlighted. In another study, Akula and Garibay [35] aimed to develop an interpretable deep learning
model for sarcasm detection for English social media data. They used preprocessed data and BERT embeddings in a Neural
Network (NN) based solution, including a multi-head self-attention module and GRU. The self-attention part was added for
interpretability purposes, and the authors illustrated that this module improved results. They built an attention map that
provides a picture of the per-word attention weights for the sentences. So for sentences with sarcasm, this map showed
words that have more attention than others (for example, ‘‘just”, ‘‘again”, ‘‘totally”) in order to give the researcher more
insight about which words attribute a high sarcasm level to the text.

Besides distinguishing between ‘‘local” vs. ‘‘global” and ‘‘post hoc” vs. ‘‘self-explanatory” explanations, Danilevsky et al.
[30] also identified five main explainability techniques:
523



O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
1. Feature importance: an explanation is obtained by investigating the importance scores of features that were used to gen-
erate predictions.

2. Surrogate models: predictions of the model are explained by learning another, more explainable model.
3. Example-driven techniques: they explain the prediction for the input instance by connecting it to other labelled

instances.
4. Provenance-based: we are able to explain some of the prediction-making process steps, which usually are represented by

an intuitive approach, so the result is obtained as a series of logical transformations.
5. Declarative induction: by means of human-level readable explanations, for example, a set of rules.

Taking into account that we represent tweets as high-dimensional text embedding vectors, feature importance-based
methods are not the best choice, since the individual components of an embedding vector are difficult to interpret. By con-
trast, in our approach we provide explanations for the predicted label of the test instance by looking at its neighbouring
labelled instances; thus, it can be categorized as a local, self-explaining example-driven method.

In Section 5.2, we will illustrate our method as part of the error analysis process and show that it may provide a wider
picture than an attention-based map. Particularly, besides detecting the keywords that influenced the prediction-making
process, we can identify whole topics that relate to a given tweet. We can also identify mistakes caused by similar tweet
topics and detect confusing tweets that affected our results. In this way, we can correct our model to obtain better results
in future experiments.
3. Methodology

In this section, we present the theoretical background of our experiments. In Section 3.1 we describe the different text
preprocessing steps we considered. Section 3.2 presents a description of text embedding methods and explains how we
applied them in our pipeline. In Sections 3.3 and 3.4, we give an overview of the classification and regression methods that
we considered during our experiments and the evaluation metrics to evaluate our results.
3.1. Data cleaning

Besides pure text, every tweet usually also contains some of the following information: name tags, hashtags, emojis, links,
etc. Some of them can be a source of helpful information, while others should be cleaned to improve the quality of the text
embedding process. Text embedding methods take the text as input and provide a numerical vector (or a set of vectors) as
output. This vector represents the original text in a multi-dimensional space in such a way that similar text fragments are
encoded by close vectors. Text embedding methods are described in detail in Section 3.2. In general, we tried three different
text preprocessing approaches for each dataset and each embedding method to identify the best setups:

1. Using raw tweets without any preprocessing.
2. Using tweet cleaning: deleting numbers, special symbols, links, user tags, and the ”#” symbol with the ”tweet-pre

processor” package, and replacing emojis with their textual descriptions with the ”emoji” package.
3. Similar as the previous step, but with additional stop-word removal using the ”NLTK” package.

Regarding emojis (which are present in less than 15% of tweets in the emotion detection dataset), we decided to retain
them because they may provide hints about the writer’s emotional state (as was illustrated by [36]). We tried direct and
indirect approaches to adapt the emoji Unicode format for text embedding. In the direct approach, we used an embedding
method called Emoji2Vec7, which represents a dictionary and transforms each emoji into a vector. However, this solution is
limited to a particular set of emojis and does not consider the tweet’s context. In the indirect approach, we used the Emoji pack-
age8 which transforms each emoji to its textual description, such that it becomes part of the textual content of the tweet and is
embedded with it. We performed experiments for the emotion detection dataset with the same classification setup, cross-
validation, and evaluation measurement for both emoji preprocessing methods. As the results showed that the indirect
approach provides higher evaluation scores, we kept this method for our future experiments. Another specific feature of tweets
is the use of hashtags, which are present in roughly 40% of the tweets. Hashtags are an instance of textual information, but they
usually contain more important keywords than the main part of the tweet. Often, hashtags are used to collect data (e.g. [13]
used a list of hashtags to parse tweets and to gather emotion datasets). Initially, we tried to delete ”#” symbols before hashtags
and keep them as part of the text. However, since hashtags could be part of a tweet message (”I feel so #angry, can’t believe that
really happened to me!”) or be listed at the end of the tweet (”Well, I guess my day is ruined. . .#sad #angst #sadness”), we also tried
to take this into account by transforming these latter hashtags into separate sentences (”Well, I guess my day is ruined. . .Sad.
Angst. Sadness.”). Since this did not affect our results much, we kept the initial approach - deleting the ”#” symbol and main-
taining hashtags as they are. Regarding the rest of the non-textual parts of tweets, such as numbers, punctuation, special sym-
7 https://github.com/uclnlp/emoji2vec
8 https://pypi.org/project/emoji/

524



O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
bols (like ”/n”), links, and user tags, we tried to delete (clean) or keep them to improve our results. Cleaning can be done with
custom functions using the ”regex” package9 or using existing packages for tweet parsing, like ”tweet-preprocessor”10. After
experiments on the emotion detection dataset, we concluded that the most effective approach is to delete all these tweet parts,
except for punctuation which could be useful during the data embedding step to save the tweet’s context. A final possibility to
clean tweets consists in deleting stop words from the main text of the tweet. Stop words are frequently used words that don’t
have any important meaning (”the”, ”a”, ”any”, etc.). A list of such words for the English language is provided in the ”NLTK” pack-
age11. As we will show in the experimental part, this solution proves useful for some embedding techniques but is mostly infe-
rior if the embedding algorithm considers the context of the text.
3.2. Tweet embedding

To use tweets in classification methods, we shall represent them as vectors in an N-dimensional space, so tweets that
have a similar meaning will be represented by neighbouring vectors. This is achieved by embedding algorithms: they trans-
form the text into a numerical shape while maintaining their similarities. Tweet embeddings operate on different text levels
- at the level of individual symbols, words, collocations, sentences, paragraphs, or the whole text. Also, the method itself can
take various shapes, ranging from simple dictionaries to context-based language models. In this paper, we will consider dif-
ferent types of text embedding techniques. The first and earliest type of DL-based embedding method is Word2Vec, first pre-
sented in [37,38]. Word2Vec has two architecture options: Continuous Bag of Words (CBOW) and Skip-gram. The CBOW
model uses context representations to predict a missing word, whereas the Skip-gram model uses a representation of the
word to predict the context. After model training, specific weights for every word are extracted as embedding vectors. As
such, the Word2Vec model used in this paper represents each word as a 300-dimensional vector. This dimensionality was
used as the standard one for the Word2Vec model presented in the Gensim package12. It provides a Word2Vec model pre-
trained on a Google News dataset that contains near to 100 billion words. Word2Vec has the form of a dictionary of almost
3 million words and phrases, and cannot be fine-tuned. After the Word2Vec papers were published, many similar approaches
appeared, for example the Doc2Vec13 packages that work similarly to Word2Vec, but for whole paragraphs of a text rather than
for individual words. We tried the latter approach as well, but got very unsatisfying results for our data. Therefore, we will only
use the Gensim pre-trained Word2Vec model. To obtain a vector for a whole tweet, we take the mean of all its words’ vectors.
Embedding methods can also take into account sentiment hidden in a sentence. For example, the DeepMoji model presented in
[39] is an LSTM-based model trained on over one million tweets containing one out of 64 different emojis with the purpose of
recognizing emotions in text. DeepMoji, unlike Word2Vec, provides a vector representation for the full tweet. For our experi-
ments, we used the PyTorch implementation of the DeepMoji model provided by Huggingface14. We also used more advanced
recent methods, for example, the Universal Sentence Encoder (USE) developed by TensorFlow15 and described in [40]. This
model was pre-trained on various datasets for different tasks, from text classification to sentence similarity. USE works at
the level of paragraphs and provides a 512-dimensional (standard size of the pre-trained USE embedding) vector representation
for the full tweet. USE has two available architectures, one is based on a Deep Averaging Network (DAN), and the second uses a
transformer encoder. After experiments on the emotion detection dataset with the same classification method, text preprocess-
ing steps and evaluation, we chose the second option as it gave better results. The earlier mentioned transformer encoders rep-
resent the current state-of-the-art approach in the NLP area. The very first such model was BERT by [7]. It was developed by the
Google AI Language Team with the idea of pre-training deep bidirectional representations based on unlabelled text. BERT was
pre-trained on datasets for two tasks: language modeling and next sentence prediction. However, this model can be easily fine-
tuned for different tasks with extra output layers without architecture modifications. We used the PyTorch BERT realisation16 to
extract 768-dimensional vectors for each tweet’s token (part of the word) and again used the mean to obtain the whole tweet’s
vector. The size of 768 dimensions is standard for the base-BERT model; however, it increases for larger models. We also con-
sidered other models based on BERT, for example, Sentence-BERT (SBERT) by Reimers and Gurevych [41] which is a variation of
the original BERT, tuned for sentence-level vector extraction. SBERT was trained on a collection of sentence pairs and it can pro-
cess two tweets simultaneously because it uses twin network structures, providing a 768-dimensional vector for the whole
tweet. Another model is the Twitter-roBERTa-based model by Barbieri et al. [42]. The authors presented seven models for dif-
ferent tasks, including emotion detection, hate speech, and irony classification. These models are fine-tuned on similar SemEval
data versions of the Robustly Optimized BERT Pre-training Approach (roBERTa), analogous to the BERT model but with some
minor changes of the training procedure and architecture. Besides the previously described methods, we also investigated sev-
eral other embedding approaches that did not perform well and therefore were not included in our main experiments. Mainly,
we tried FastText pre-trained word vectors by Mikolov et al. [43] which is a more advanced Word2Vec solution based on CBOW,
9 https://docs.python.org/3/library/re.html
10 https://pypi.org/project/tweet-preprocessor/
11 https://www.nltk.org/
12 https://radimrehurek.com/gensim/models/word2vec.html
13 https://radimrehurek.com/gensim/models/doc2vec.html
14 https://github.com/huggingface/torchMoji
15 https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
16 https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/examples/extract_features.py

525



O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
spaCy embedding models17 by Honnibal and Montani [44] which are based on CNN models and available for English in two
sizes: small and large (we considered both models for our experiments), and BERTweet by Nguyen et al. [45], which is a
BERT-based model with a RoBERTa pre-training procedure executed on 850 million English tweets. Finally, we also investigated
the idea to use emotion lexicons to improve the quality of the obtained embedding vectors and add more emotion-related infor-
mation. An emotion lexicon is a vocabulary of words, where each word is assigned an emotional intensity score. In [29], we tried
five different lexicons along with different ways of combining them with word embedding vectors, but none of them improved
the obtained results. For this reason, emotion lexicons are not considered in the current paper.

3.3. Classification methods

This section presents the fuzzy rough set-based methods we investigated for our experiments and their ensembles.

3.3.1. Similarity relation
Prior to the description of classification methods, it is important to discuss the similarity metric that we used to measure

how similar the considered vectors (in other words, tweet embeddings) are. Huang [46] compared different metrics for sim-
ilar NLP tasks: Euclidean distance, Jaccard coefficient, Pearson Correlation Coefficient, averaged Kullback–Leibler divergence,
and cosine similarity. Based on their findings, we chose the latter for our experiments:
17 http
18 http
cos A;Bð Þ ¼ A � B
jjAjj � jjBjj ð1Þ
In Eq. (1), A and B correspond to elements from the same vector space (tweets embeddings), A � B denotes their scalar pro-
duct, and jjxjj is the vector norm of x. To fit NN-based methods, we need a similarity relation that provides values between 0
(vectors are totally different) and 1 (vectors are identical). In contrast, the cosine distance’s outputs are between �1 (per-
fectly dissimilar vectors) and 1 (perfectly similar vectors). Hence, we apply the following transformation:
cos similarity A;Bð Þ ¼ 1þ cos A;Bð Þ
2

: ð2Þ
Finally, we note that we also examined Hausdorff distance for comparing tweets, considering that tweets can be seen as
sets of individual words. However, this approach did not provide satisfactory results, so we dismissed it.

3.3.2. FRNN-OWA method
In our work, we consider methods based on fuzzy rough set theory, mainly the fuzzy-rough nearest neighbour (FRNN)

classification model that was proposed in [8].
FRNN is an instance-based algorithm that performs classification using lower (L) and upper (U) approximations from

fuzzy rough set theory. [8] showed that the method outperformed classical NN approaches and that it is competitive with
the leading classification algorithms. To make the solution more robust and noise-tolerant, [47] proposed an FRNN extension
with ordered weighted average (OWA) operators. The authors used OWA operators to determine membership to the lower
and upper approximation by means of an aggregation process. In [48], the authors presented an approximate FRNN-OWA
solution, which modifies the approximations’ calculation process. They managed to keep the accuracy of the original
approach while improving the execution speed. They also developed a Python package18 for these methods in [49], which

will be used in our experiments. We will denote the OWA aggregation of value set V (v ið Þ is the ith largest element in V) with

weight vector W
�! ¼ w1;w2; . . . ;wjV j

� �
, where 8ið Þ wi 2 0;1½ �ð Þ and PjV j

i¼1wi ¼ 1, with:
OWA
W
�! Vð Þ ¼

XjV j
i¼1

wiv ið Þ
� � ð3Þ
We experimented with several types of OWA operators and concluded that the additive weight type ([47]) clearly per-
formed best for our data. Additive weights are linearly increasing for lower approximation (Formula (4), where p (p > 1)
denotes the vector’s length) and decreasing for upper approximation (Formula (5)).
W
�!add

L ¼ 2
p pþ 1ð Þ ;

4
p pþ 1ð Þ ; . . . ;

2 p� 1ð Þ
p pþ 1ð Þ ;

2
pþ 1

� �
ð4Þ

W
�!add

U ¼ 2
pþ 1

;
2 p� 1ð Þ
p pþ 1ð Þ ; . . . ;

4
p pþ 1ð Þ ;

2
p pþ 1ð Þ

� �
ð5Þ
Next, during the classification of a test vector y, the FRNN-OWA method calculates the membership degree of y to the
lower (Formula (6)) and upper (Formula (7)) approximation of each decision class C.
s://spacy.io/models
s://github.com/oulenz/fuzzy-rough-learn

526



19 For

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
C yð Þ ¼ OWA
W
�!

L

1� R x; yð Þjx 2 X n Cf gÞ ð6Þ

C yð Þ ¼ OWA
W
�!

U

R x; yð Þjx 2 Cf gÞ ð7Þ
Then, the method assigns y to the class C that has the highest sum C yð Þ þ C yð Þ. For efficiency purposes, calculations are
limited by a parameter k (amount of nearest neighbours of test instance y used to construct the approximations). In Eq. (6), k
refers to the number of neighbours of y from classes other than C and in Eq. (7) to the number of neighbours of y from C.
There are no general rules on how to set k, hence, we will tune this parameter for each dataset in our experiments. Finally,
FRNN-OWA also provides a natural way to derive confidence scores for its predictions. In particular, for each class C and test
instance y, the confidence score can be calculated as
Conf C; yð Þ ¼ C yð Þ þ C yð ÞX
C02C

C0 yð Þ þ C0 yð Þ ð8Þ
3.3.3. Method based on FRNN-OWA regression
As an alternative solution to FRNN-OWA for the emotion detection issue, which can be considered as an ordinal classi-

fication task, we also tried FRNN regression ([8], Algorithm 4). For the test instance y, this algorithm predicts a value based
on the classes of the k nearest neighbours of instance y, similarly to kNN regression. The main feature of FRNN regression is
that it calculates the output for y as a weighted mean, where the weights are represented with the upper and lower approx-
imation membership degrees of the k neighbours’ output values. In our experiments, we fine-tuned the parameter k for each
emotion dataset. The FRNN regression algorithm returns a float number for each test instance. To adjust this algorithm for
our classification task, we use standard rounding for each output value to obtain a class prediction.

3.3.4. Ensembles
Apart from performing our experiments for standalone classification methods, we will also consider their combination in

an ensemble, where each model will be based on a separate embedding method. To this aim, we tune parameters for each
combination of a dataset and an embedding method to identify optimal setups. To obtain the final output, a voting function
is needed. After experiments with various options (median, majority, maximum, etc.), the best-performing voting function
turned out to be a weighted average, where the weights are derived from the confidence scores that each FRNN-OWA clas-
sifier generates19.

An analysis of the confidence scores we obtained in our experiments pointed out that they are often close to each other
and generally lie within the range 0:4;0:6½ �. We hypothesize that this may be due to the high dimensionality of tweet embed-
dings, causing the upper approximation memberships to be close to 1 and the lower ones to 0. To mend this issue, we pro-
pose rescaling the original confidence scores in order to amplify their differences. In practice, we proceed as follows. Denote
by Confi Cj; y

� �
the confidence score of the i-th member of the ensemble for test instance y to belong to class Cj, calculated as

in Eq. (8). We subtract 0:5 from Confi Cj; y
� �

and divide the result by a small value a (0 < a < 1). Next, we compute the sum of
the scores for each class. Since the obtained values may be negative, we use the softmax transformation to turn them into
values between 0 and 1. The steps of this rescaling process are summarized as follows:
wi ¼
exp

X
j

Confi Cj; y
� �� 0:5

� �
=a

 !

X
k

exp
X
j

Confk Cj; y
� �� 0:5

� �
=a

 ! ; ð9Þ
The full architecture of our solution is shown in Fig. 1, where n is the number of embedding methods, ki is the number of
neighbours (parameter k) for the i-th ensemble model, andwi is the weight for the i-th model’s output in the voting function.

3.4. Evaluation methods

To measure and compare the obtained prediction results, we use three different metrics. Two of them were proposed by
the organizers of the respective SemEval competitions, whereas the last is added to obtain a more complete picture of our
methods’ performance.

PCC (10) was used in the SemEval competition on emotion detection. Let y be the vector of predicted values and x that of

correct values, with xi and yi as the ith elements of x and y, and denote their means by �x and �y. The PCC is given by:
FRNN regression, which does not generate any confidence scores, we used the classical average as voting function.

527



Fig. 1. Scheme of our solution with an ensemble of FRNN-OWA classifiers.

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
PCC ¼

X
i

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

xi � �xð Þ2
X
i

yi � �yð Þ2
r : ð10Þ
PCC scores vary between �1 (a total negative linear correlation) and 1 (a total positive linear correlation), where 0 cor-
responds to no linear correlation. As a consequence, during model comparison, we will seek the model with the highest PCC.
An additional metric that we consider for the emotion detection task is mean absolute error (MAE) (11). This choice of metric
is inspired by the fact that we are dealing with an ordinal classification task. The MAE formula is:
MAE ¼

X
i

jyi � �xij

n
; ð11Þ
where n is the size of vectors x and y. Better predictions correspond to lower MAE values. A final metric is the F1-score (12)
that was used for the offensive language, hate speech, and irony detection SemEval competitions. Particularly, a macro-
averaged F1-score is used, where all classes have equal weights. The formula for the F1-score is:
F1 ¼ 2 � Precision � Recall
Precisionþ Recall

; ð12Þ
where Precision is the fraction of correctly predicted instances out of all predicted labels, and Recall is the fraction of correctly
predicted labels out of all ground-truth labels. For the F1-score, we are looking for the highest score to choose the best model.

4. Experiments

In this section, we present the results of the methods described in Section 3 on the training portion of the datasets men-
tioned in Section 2.1. In the first step (Section 4.1), we detect the best setup for each dataset and each embedding method,
and in the second (Section 4.2), we tune ensembles of models to obtain the most efficient approach per dataset. In Section 5,
we provide the results of the best setups on the test data to see how well they generalize to new data.

4.1. Detecting the best setup for embedding methods

For each dataset, we apply the six embedding methods described in Section 3.2. To detect the best setup for each method,
we tuned the parameter k (number of neighbours) and prior text cleaning options. First, we select the best text preprocessing
approach for each combination of a dataset and an embedding method. For this purpose, we perform 5-fold cross-validation
on the training data with the same list of k values (determined based on the size of each data set) for each preprocessing
option: raw tweets, cleaned tweets, and cleaned tweets without stop words. For the emotion datasets (anger, joy, sadness,
and fear) we use PCC, and for the other datasets (hate speech, offensive language, and irony) we use the F1-score.

Table 1 shows the results on the four emotions datasets for the FRNN-OWA classification method. From this table, we can
immediately observe that the roBERTa-based embedding method provides superior results to the others on all datasets. This
observation comes as no particular surprise since roBERTa was fine-tuned on data similar to the SemEval competition data
and its performance is in line with earlier results for related classification tasks [42]. On the other hand, the lowest scores are
obtained for Word2Vec and BERT. Their relatively poor performance may be explained by the fact that they were trained on a
too generic corpus. Also, we note that the PCC scores for Fear are often the lowest among the emotions, which may be due to
the fact that this dataset is the most unbalanced dataset. On the other hand, the most balanced dataset (Joy) generally
receives the best prediction results.

Note that some embeddings do not require any preprocessing at all, like DeepMoji and BERT. Probably this is due to the
fact that these embeddings take into account the context of words. For the other methods, tweet cleaning generally
528



Table 1
Optimal FRNN-OWA classification setup (preprocessing, number of neighbours k) and corresponding PCC score per embedding for the emotion datasets.

Setup Anger Joy Sadness Fear

roBERTa-based
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning No No No No
k value 19 9 23 9
PCC 0.6779 0.6956 0.7062 0.6031

DeepMoji
Tweet cleaning No No No No

Stop-word cleaning No No No No
k value 23 19 23 21
PCC 0.5853 0.6520 0.6380 0.5745

BERT
Tweet cleaning No No No No

Stop-word cleaning No No No No
k value 19 17 23 7
PCC 0.4492 0.5374 0.4391 0.4500

SBERT
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning No No No No
k value 19 15 23 11
PCC 0.5016 0.5660 0.5655 0.5192

USE
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning No No No No
k value 23 23 23 21
PCC 0.5054 0.5693 0.5961 0.5764

Word2Vec
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning Yes Yes Yes Yes
k value 21 23 23 7
PCC 0.5009 0.5099 0.5048 0.4496

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
performed better, while only Word2Vec benefits from stop word removal. The optimal value of k varies between methods
and datasets; we note that for Fear, lower values of k are generally better, which may again be linked to the imbalance of this
dataset.

The results for FRNN regression are shown in Table 2. First, we may notice that for most embeddings, the results still
slightly improve those of their classification counterparts. A notable exception is the Word2Vec method, which is the only
one to performworse on all four emotions. Concerning the differences between embeddings, we observe similar trends as for
FRNN-OWA classification: the best results are obtained for roBERTa, except for Fear, on which DeepMoji performs slightly
better. BERT and Word2Vec are underperforming by comparison. The optimal preprocessing options also vary a bit, with
tweet cleaning now proving beneficial in the majority of cases.

Finally, we repeated the above experimental analysis also for the Hate Speech, Offensive language and Irony datasets with
the FRNN-OWA method. Our findings, summarized in Table 3, reveal for all of them, that the roBERTa-based embedding by
far outperforms the remaining embedding methods. The results also indicate that in this case preprocessing is not helpful.
4.2. Ensembles

In the next step, we consider an ensemble of six FRNN-OWA classifiers, corresponding to the six tweet embeddings meth-
ods outlined before. Table 4 shows the results, using first the standard mean as voting function (in other words, attributing
equal importance to each classifier) and then the weighted average involving rescaled confidence scores as defined in Eq. (9).
For the latter approach, the a parameter was tuned by a grid search and its optimal values for each data set are also included
in the table.

From Table 4, we can see that overall the weighted average voting function is a better option than the standard mean,
improving the results of the latter except for Fear, for which it obtains a slightly lower PCC score. We also notice that for
all emotion datasets the ensemble outperforms the use of a single classifier. For the Hate Speech, Offensive language and
Irony datasets, however, it is clear that using the standalone roBERTa-based embedding (see Table 3) is still better than
any of the ensemble strategies, so we will not consider the latter further on.

Given the large performance gap between different individual embeddings in Tables 1 and 2, we also consider ensembles
constructed with a subset of embeddings, using a grid search to identify the optimal setup. The results of this analysis are
shown in Table 5.
529



Table 2
Optimal FRNN regression setup (preprocessing, number of neighbours k) and corresponding PCC score per embedding for the emotion datasets.

Setup Anger Joy Sadness Fear

roBERTa-based
Tweet cleaning Yes Yes No Yes

Stop-word cleaning No No No No
k value 23 15 19 7
PCC 0.6930 0.7146 0.7188 0.6169

DeepMoji
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning No No No No
k value 27 23 23 17
PCC 0.6316 0.6448 0.6772 0.6271

BERT
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning No No No No
k value 13 19 19 5
PCC 0.4618 0.5469 0.4760 0.4338

SBERT
Tweet cleaning Yes No Yes Yes

Stop-word cleaning Yes No No No
k value 11 17 7 19
PCC 0.5298 0.5587 0.5527 0.4976

USE
Tweet cleaning No Yes No Yes

Stop-word cleaning No No No No
k value 29 13 29 11
PCC 0.5494 0.5913 0.6419 0.5798

Word2Vec
Tweet cleaning Yes Yes Yes Yes

Stop-word cleaning Yes No Yes Yes
k value 21 9 29 5
PCC 0.4273 0.4582 0.4806 0.4295

Table 3
Optimal FRNN-OWA classification setup (preprocessing, number of neighbours k) and corresponding F1 score for all embedding for the Hate Speech, Offensive
and Irony datasets.

Setup Hate Speech Offens Irony

roBERTa-based
Tweet cleaning No No No

Stop-word cleaning No No No
k value 25 45 27
F1 score 0.8765 0.8377 0.9365

DeepMoji
Tweet cleaning No No No

Stop-word cleaning No No No
k value 19 39 15
F1 score 0.6223 0.6567 0.6774

BERT
Tweet cleaning Yes No No

Stop-word cleaning No No No
k value 15 47 23
F1 score 0.7172 0.6847 0.6563

SBERT
Tweet cleaning No No No

Stop-word cleaning No No No
k value 15 47 29
F1 score 0.7063 0.7063 0.6504

USE
Tweet cleaning Yes No No

Stop-word cleaning No No No
k value 13 35 25
F1 score 0.7037 0.6898 0.6650

Word2Vec
Tweet cleaning Yes Yes Yes

Stop-word cleaning Yes Yes Yes
k value 13 39 27
F1 score 0.6700 0.6622 0.5966

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535

530



Table 4
Results for an ensemble of six FRNN-OWA methods with different embeddings, using two different voting functions.

Setup Anger Joy Sadness Fear Hate Speech Offens Irony

PCC F1-score
Standard mean 0.6475 0.7126 0.7152 0.6448 0.7500 0.6796 0.7331
Conf. scores 0.6960 0.7512 0.7455 0.6430 0.8116 0.7119 0.8350
tuned a a = 0.029 a = 0.032 a = 0.032 a = 0.046 a = 0.1 a = 0.8 a = 0.5

Table 5
Optimal FRNN-OWA classification and FRNN regression ensemble setup and corresponding PCC score for the emotion datasets.

Dataset Setup PCC

FRNN-OWA
Anger roBERTa, DeepMoji, USE, Word2Vec, BERT 0.7241
Joy roBERTa, DeepMoji, USE, SBERT, BERT 0.7788

Sadness roBERTa, DeepMoji, USE, SBERT 0.7719
Fear roBERTa, DeepMoji, USE, Word2Vec, SBERT 0.6930

Hate speech roBERTa 0.8765
Offensive roBERTa 0.8377
Irony roBERTa 0.9365

FRNN Regression
Anger roBERTa 0.6930
Joy roBERTa 0.7146

Sadness roBERTa 0.7188
Fear roBERTa, DeepMoji, USE, sBERT 0.6565

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
We conclude that the best setups for the emotions datasets with FRNN-OWA require four to five embeddings to provide
the best results. Meanwhile, for the other datasets (Hate Speech, Offensive language, and Irony) and FRNN regression, the
best results are obtained with the standalone roBERTa embedding, except for FRNN regression on the Fear dataset.
5. Evaluation on the test data

In this section, we provide and discuss the results of the best settings described in the previous section (cfr. Table 5)
applied to the test datasets. We also examine several samples of correct and wrong predictions in the error analysis part.
5.1. Test results

Table 6 lists the results of our approaches for the emotion datasets. Apart from the PCC used by the competition organiz-
ers, we also included the MAE. We calculated the mean scores of all four datasets because the averaged score is used in the
original SemEval competition [13] to compare the solutions. We also included the results of the competition’s top-3 solu-
tions, which were discussed in Section 2.1.

As we can see from Table 6, the FRNN-OWA method performs better for the PCC metric and FRNN regression for MAE. It
makes sense, taking into account the idea behind the MAE metric. However, since the PCC is the evaluation metric of this
SemEval competition, the FRNN-OWA classifier obtains a higher position on the leaderboard for the English EI-oc subtask20.

The PCC and MAE scores are generally slightly worse for the test data than for the training data, with the notable excep-
tion of Fear and MAE. Furthermore, similar patterns may be observed as in the training stage: the best performance is
obtained for Joy and the worst one for Fear.

For the other datasets (Hate Speech, Offensive language, and Irony), we listed the F1-scores obtained with the FRNN-OWA
method in Table 7. For all these competitions, we obtained top-5 positions.21 Although the leaderboard is private for the Hate
Speech and Offensive language competition, it is available for the Irony competition.22 Hence, we added the results of the top-3
teams (see Section 2.1) for each SemEval competition to Table 7. Similarly to Table 6, the winners’ approaches are mainly based
on deep learning methods (BERT, BiGRUs, LSTM, BiLSTM).

We also can notice that for the Hate Speech and Irony datasets, the gap between cross-validation and test scores is much
bigger than for the Offensive language detection task. After some additional experiments for those datasets, we can assume
that it was caused neither by the roBERTa embedding method nor by the number of neighbours. We suggest that probably
the reason is that train and test data came from different distributions.
20 https://competitions.codalab.org/competitions/17751#results
21 Due to CodaLab restrictions it was not possible to submit our labels, so we calculated our places on our own with the provided validation scripts.
22 https://competitions.codalab.org/competitions/17468#results

531



Table 6
Comparison of evaluation metrics for the best setup for the emotion test dataset with FRNN-OWA and FRNN regression methods.

Dataset FRNN-OWA FRNN regression

Train Test Train Test

MAE
Anger 1.4447 1.0698 0.5615 0.6866
Joy 1.3420 1.5447 0.5755 0.5665

Sadness 1.2181 1.1179 0.5476 0.5712
Fear 0.6209 0.6622 0.4498 0.5801

Averaged 1.1564 1.0986 0.5336 0.6011
PCC

Anger 0.7241 0.6388 0.6930 0.6671
Joy 0.7788 0.7115 0.7146 0.6738

Sadness 0.7719 0.6967 0.7188 0.6865
Fear 0.6930 0.5705 0.6565 0.5724

Averaged 0.7419 0.6544 0.6957 0.6499
Leaderboard 2nd place 4rd place

TOP-3 placestest PCC scores 0.695, 0.653, 0.646[14–16]

Table 7
F1-scores for the best FRNN-OWA setup for the hate speech, offensive and irony test datasets.

Setup HateSpeech Offens Irony

Train 0.8765 0.8377 0.9365
Test 0.5351 0.8109 0.6515

Leaderboard 5th place 4th place 3rd place
TOP-3 placestest F1-scores 0.651, 0.571, 0.546 [23], -, [24] 0.829, 0.815, 0.814 [19], [20], [21] 0.7054, 0.6719, 0.65 [26–28]

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
5.2. Error analysis

To examine the performance of our proposed approach in more detail, we explore correct and wrong samples of test
instances. This may also serve to illustrate our solution’s explainability, where particular patterns could be observed.

To detect neighbouring training tweets for the test instance, we calculated the cosine similarly between the test tweet
and all training tweets for each embedding separately, since they provide different locations of instances in the multi-
dimensional space. We took into account all embedding approaches used in models of the best ensemble and took the
top k closest neighbours for each. Below, when we present ‘‘training neighbours of the test instance”, we mean those tweets
in the intersection, or in most, of the selected top-k neighbourhoods.

First of all, we computed the confusion matrices for all test datasets. Results for the emotion datasets are presented in
Table 8. We can see that the true class is confused with one of the neighbouring classes in most of the erroneous predictions.
For example, in the Anger dataset, the real class ‘2’ is mainly predicted as ‘2’, with minor cases predicted as adjacent classes
‘1’ or ‘3’ and never as ‘0’.

Remarkably, opposite classes ‘0’ and ‘3’ are rarely confused. The only exception to this pattern is the Fear dataset, where
four test samples with true class ‘3’ are labelled as ‘0’. We examined these four mislabelled samples to understand the nature
of the mistake. One of these test tweets, ‘‘things that terrify me: remembering my bf follows me on twitter”, has the majority of
Table 8
Confusion matrices for emotion test datasets.

True class Predicted class

0 1 2 3 0 1 2 3

Anger Joy
0 94 267 104 0 87 86 21 0
1 1 50 96 1 26 142 157 8
2 0 40 193 10 1 49 241 69
3 0 4 100 42 0 3 90 125

Sadness Fear

0 178 176 44 0 398 230 5 0
1 13 80 93 7 24 94 6 0
2 4 53 172 26 20 112 20 6
3 0 5 72 52 4 27 36 4

532



Table 9
Confusion matrices for Hate Speech, Offensive language, and Irony test datasets.

True classes Predicted classes

0 1 0 1 0 1

Hate Speech Offensive Irony

0 486 1254 574 46 455 18
1 62 1198 77 163 202 109

O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
closest neighbours from training tweets with topics related to social media. For example, neighbour ‘‘The way I’m always on
twitter at work is a little alarming:woman_facepalming:” has class ‘0’ (no fear was detected).

Another test example ‘‘@USER My dad ordered my tickets for the show in Hamburg, his name is now printed on the tickets, is
the same surname enough? #panic” with class ‘3’ was classified with class ‘0’. Its neighbours are about entertainment-related
topics, like tickets: ‘‘@USER why does the ticket website never work? Trying to buy Palace tickets and it’s impossible and says
there’s an error #awful” (class ’0’) or the name: ‘‘thank you for your concern, computer, but my last name isn’t misspelled, it’s
just weird” (class ‘0’).

For comparison, we also take a closer look at one of the four correctly predicted test samples with the highest level of Fear
(class ‘3’): ‘‘ugh going to college tm, so nervous. #college #life #collegelife #newyearnewme”. The closest training neighbours for
this sample are mainly related to school and often consist of the word ‘‘nervous”, for example, ‘‘I have another test tonight
#nervous” with class ‘3’. For the other three correctly predicted cases with class ‘3’, the situation is similar, where the major-
ity of neighbours share the same word ‘‘nervous” or ‘‘anxiety”.

As we can see from the presented samples, having a common topic is a strong feature for neighbour detection. To get a
broader picture, we explore more datasets. As a sample of correctly predicted joyful tweets with class ‘3’, we can consider the
test instance ‘‘@USER Happy #blissful birthday”. The majority of its neighbours are about birthdays as well, for example,
‘‘@USER happy birthday:) have a blessed day, love from Toronto:) #bday” with class ‘3’. In this case, we can consider ‘‘birthday”
not only as a common topic but also as a strong keyword for neighbour detection.

A similar situation we can see for the wrongly predicted test tweet ‘‘Good Night everyone. . .#goodnight #sleep #nice #great
#night #music #day” with correct class ‘1’ that was predicted as ‘3’. Its neighbours are mainly about good night/morning/
afternoon wishes, with classes ‘3’ or ‘2’, such as ‘‘Good night, Twitter world! Wish you all good sleep/ productive jovial days!:)”
with class ‘3’.

For the other three datasets (Hate Speech, Offensive language, and Irony), the confusion matrices are shown in Table 9.
The Offensive language dataset is the only one where the number of correct predictions for both classes is higher than the
false positive and false negative predictions. Hence, we will take a closer look at the other two datasets and provide some
examples of wrong predictions.

As for the Irony dataset, we can take a look at one sample with true class ‘1’ (irony present): ‘‘Christmas alone:smil-
ing_face_with_smiling_eyes: how nice #not”. Its neighbours are mainly about Christmas, gifts, or winter and are not ironic
(class ‘0’). A sample: ‘‘Yay for days off. #coffee #HarryPotter #christmasbreak #morning LINK” with class ‘0’. Hence, we can
see that the classifier is misled by Christmas as a strong topic or even keyword. On the other hand, the hashtag ‘‘#not”, which
for humans is considered a strong indicator of ironic speech, was probably not taken into account because of its generic
content.

Taking a look at the Hate Speech dataset, we can notice that many tweets are similar and concern hate speech towards
immigrants or women, as mentioned in the dataset’s description. For example, a correctly classified hateful test tweet with
class ‘1’ is the following: ‘‘WAKE UP AMERICA. We cannot continue to allow illegal aliens to stay in County. They are a real and
present danger to LEGAL AMERICAN CITIZENS. #BuildThatWall #EndCatchAndReleash #DefundSantuaryCities”. The majority of its
neighbours are hateful (class ‘1’) and share the hashtag ‘‘#BuildThatWall”, such as ‘‘Illegal Criminals EVERYWHERE #BuildThat-
Wall !!”. This hashtag can also be considered as a strong keyword, but in this case caused a misclassification.

Another possible reason for wrong classifications could be the use of similar topics/words in a different context. For
example, the test sample ‘‘The Last Refuge has a fantastic collection of reports on a business model that profits from illegal immi-
gration. #UniParty #RobbingUsBlind #EndChainMigration #tcot #ccot #pjnet #qanon” has class ‘1’, but the majority of its train-
ing neighbours have class ‘0’ and contain words like ‘‘migration” or ‘‘immigration”, which are used in an informative rather
than hateful sense, such as ‘‘The Truth about #Immigration LINK” with class ‘0’.

In conclusion, similar topics and common keywords are strong neighbour detection features on which our approach is
based. However, they may cause errors when the same word is used in a different context.
6. Conclusion and future work

In this paper, we have evaluated the potential of interpretable machine learning methods based on fuzzy rough sets for
different subjective language classification tasks and demonstrated that they are competitive with more complex state-of-
the-art neural network-based approaches. In particular, we designed and optimized weighted ensembles of FRNN-OWA clas-
sification and FRNN regression using feature vectors obtained from different word embeddings, which are mostly sentiment-
533



O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
oriented and applied at the sentence level. Also, our error analysis reveals that our methods are capable of identifying useful
patterns that can explain their predictions.

As one of the main future challenges, we consider a more systematic approach to solution explainability. Danilevsky et al.
[30] provide several hints on how to do this. Also, we can examine the application of fuzzy rule-based methods [50] on top of
the set of nearest neighbours using high-level features since such methods may further enhance explainability.

Another important characteristic that influences the results is data imbalance, as we observed, for example, for the Fear
dataset. For further experiments, we consider the usage of imbalanced machine learning classification methods like those
described in [11].
CRediT authorship contribution statement

Olha Kaminska: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation,
Writing - original draft, Writing - review & editing, Visualization. Chris Cornelis: Supervision, Resources, Writing - review
& editing. Veronique Hoste: Supervision, Writing - review & editing.
Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Olha Kaminska and Chris Cornelis would like to thank the Odysseus project from Flanders Research Foundation (FWO),
Grant No. G0H9118N, for funding their research.

References

[1] J.J. Zhu, Y.-C. Chang, C.-H. Ku, S.Y. Li, C.-J. Chen, Online critical review classification in response strategy and service provider rating: Algorithms from
heuristic processing, sentiment analysis to deep learning, Journal of Business Research 129 (2021) 860–877.

[2] A. Chinnalagu, A.K. Durairaj, Context-based sentiment analysis on customer reviews using machine learning linear models, PeerJ Computer Science 7
(2021) e813.

[3] R.K. Gupta, A. Vishwanath, Y. Yang, Covid-19 twitter dataset with latent topics, sentiments and emotions attributes (2021–11-04). doi: 10.3886/
E120321V11.

[4] Z. Al-Makhadmeh, A. Tolba, Automatic hate speech detection using killer natural language processing optimizing ensemble deep learning approach,
Computing 102 (2) (2020) 501–522.

[5] D. Chandler, R. Munday, A dictionary of media and communication, OUP Oxford, 2011.
[6] B. Ghanem, J. Karoui, F. Benamara, P. Rosso, V. Moriceau, Irony detection in a multilingual context, Advances in Information Retrieval 12036 (2020)

141–149.
[7] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, in: Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 2019, pp. 4171–4186.

[8] R. Jensen, C. Cornelis, Fuzzy-rough nearest neighbour classification and prediction, Theoretical Computer Science 412 (42) (2011) 5871–5884.
[9] S. Vluymans, L. D’eer, Y. Saeys, C. Cornelis, Applications of fuzzy rough set theory in machine learning: a survey, Fundamenta Informaticae 142 (1–4)

(2015) 53–86.
[10] J.-H. Zhai, Fuzzy decision tree based on fuzzy-rough technique, Soft Computing 15 (6) (2011) 1087–1096.
[11] S. Vluymans, A. Fernández, Y. Saeys, C. Cornelis, F. Herrera, Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one

decomposition: a fuzzy rough set approach, Knowledge and Information Systems 56 (1) (2018) 55–84.
[12] H. Zhao, P. Wang, Q. Hu, P. Zhu, Fuzzy rough set based feature selection for large-scale hierarchical classification, IEEE Transactions on Fuzzy Systems

27 (10) (2019) 1891–1903.
[13] S.M. Mohammad, F. Bravo-Marquez, M. Salameh, S. Kiritchenko, Semeval-2018 Task 1: Affect in tweets, in: Proceedings of International Workshop on

Semantic Evaluation (SemEval-2018).
[14] V. Duppada, R. Jain, S. Hiray, SeerNet at SemEval-2018 task 1: Domain adaptation for affect in tweets, in: Proc. 12th International Workshop on

Semantic Evaluation, 2018, pp. 18–23.
[15] G. Gee, E. Wang, psyml at semeval-2018 task 1: Transfer learning for sentiment and emotion analysis, in: Proc. 12th International Workshop on

Semantic Evaluation, 2018, pp. 369–376.
[16] A. Rozental, D. Fleischer, Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification, in: Proc.

12th International Workshop on Semantic Evaluation, 2018, pp. 218–225.
[17] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, R. Kumar, SemEval-2019 task 6: Identifying and categorizing offensive language in social

media (OffensEval), in: Proc. 13th International Workshop on Semantic Evaluation, 2019, pp. 75–86.
[18] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, R. Kumar, Predicting the type and target of offensive posts in social media, in: Proceedings of

the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 1415–1420. doi:10.18653/v1/N19-1144.

[19] P. Liu, W. Li, L. Zou, Nuli at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers, in: Proc. 13th
international workshop on semantic evaluation, 2019, pp. 87–91.
534

http://refhub.elsevier.com/S0020-0255(23)00054-3/h0005
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0005
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0010
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0010
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0020
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0020
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0025
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0025
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0030
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0030
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0040
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0045
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0045
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0050
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0055
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0055
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0060
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0060


O. Kaminska, C. Cornelis and V. Hoste Information Sciences 625 (2023) 521–535
[20] A. Nikolov, V. Radivchev, Nikolov-radivchev at SemEval-2019 task 6: Offensive tweet classification with BERT and ensembles, in: Proc. 13th
International Workshop on Semantic Evaluation, 2019, pp. 691–695.

[21] J. Zhu, Z. Tian, S. Kübler, UM-IU@LING at SemEval-2019 task 6: Identifying offensive tweets using BERT and SVMs, in: Proc. 13th International
Workshop on Semantic Evaluation, 2019, pp. 788–795.

[22] V. Basile, C. Bosco, E. Fersini, N. Debora, V. Patti, F.M.R. Pardo, P. Rosso, M. Sanguinetti, et al., Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter, in: 13th International Workshop on Semantic Evaluation, 2019, pp. 54–63.

[23] V. Indurthi, B. Syed, M. Shrivastava, N. Chakravartula, M. Gupta, V. Varma, FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate
speech against immigrants and women in Twitter.

[24] Y. Ding, X. Zhou, X. Zhang, YNU_DYX at SemEval-2019 task 5: A stacked BiGRU model based on capsule network in detection of hate, in: Proc. 13th
International Workshop on Semantic Evaluation, 2019, pp. 535–539.

[25] C. Van Hee, E. Lefever, V. Hoste, SemEval-2018 task 3: Irony detection in English tweets, in: Proc. 12th International Workshop on Semantic Evaluation,
2018, pp. 39–50.

[26] C. Wu, F. Wu, S. Wu, J. Liu, Z. Yuan, Y. Huang, THU_NGN at SemEval-2018 task 3: Tweet irony detection with densely connected LSTM and multi-task
learning, in: Proc. 12th International Workshop on Semantic Evaluation, 2018, pp. 51–56.

[27] C. Baziotis, A. Nikolaos, P. Papalampidi, A. Kolovou, G. Paraskevopoulos, N. Ellinas, A. Potamianos, NTUA-SLP at SemEval-2018 task 3: Tracking ironic
tweets using ensembles of word and character level attentive RNNs, in: Proc. 12th International Workshop on Semantic Evaluation, 2018, pp. 613–621.

[28] O. Rohanian, S. Taslimipoor, R. Evans, R. Mitkov, WLV at SemEval-2018 task 3: Dissecting tweets in search of irony, in: Proc. 12th International
Workshop on Semantic Evaluation, 2018, pp. 553–559.

[29] O. Kaminska, C. Cornelis, V. Hoste, Nearest neighbour approaches for emotion detection in tweets, in: Proc. 11th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, 2021, pp. 203–212.

[30] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, P. Sen, A survey of the state of explainable AI for natural language processing, in: Proc. 1st
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural
Language Processing, 2020, pp. 447–459.

[31] Z. Wu, Y. Chen, B. Kao, Q. Liu, Perturbed masking: Parameter-free probing for analyzing and interpreting bert, arXiv preprint arXiv:2004.14786 (2020).
[32] M.T. Ribeiro, S. Singh, C. Guestrin, ”Why should I trust you?” explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, 2016, pp. 1135–1144.
[33] H. Chen, Y. Ji, Learning variational word masks to improve the interpretability of neural text classifiers, arXiv preprint arXiv:2010.00667 (2020).
[34] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in: Proceedings of the 2016 conference

of the North American chapter of the association for computational linguistics: human language technologies, 2016, pp. 1480–1489.
[35] R. Akula, I. Garibay, Explainable detection of sarcasm in social media, in: Proceedings of the Eleventh Workshop on Computational Approaches to

Subjectivity, Sentiment and Social Media Analysis, 2021, pp. 34–39.
[36] S. Boy, D. Ruiter, D. Klakow, Emoji-based transfer learning for sentiment tasks, in: Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Student Research Workshop, 2021, pp. 103–110.
[37] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, CoRR abs/1301.3781 (2013).
[38] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Proceedings of

the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, 2013, p. 3111–3119.
[39] B. Felbo, A. Mislove, A. S++gaard, I. Rahwan, S. Lehmann, Using millions of emoji occurrences to learn any-domain representations for detecting

sentiment, emotion and sarcasm, Proc. 2017 Conference on Empirical Methods in Natural Language Processing (2017).
[40] D. Cer, Y. Yang, S.-Y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar, B. Strope, R. Kurzweil, Universal sentence

encoder for English, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2018, pp.
169–174. doi:10.18653/v1/D18-2029. url:https://www.aclweb.org/anthology/D18-2029.

[41] N. Reimers, I. Gurevych, Sentence-BERT: Sentence embeddings using Siamese BERT-networks, in: Proc. 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–3992.

[42] F. Barbieri, J. Camacho-Collados, L. Espinosa Anke, L. Neves, TweetEval: Unified benchmark and comparative evaluation for tweet classification, in:
Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 1644–1650.

[43] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, Advances in pre-training distributed word representations, in: Proc. International Conference
on Language Resources and Evaluation (LREC 2018), 2018.

[44] M. Honnibal, I. Montani, spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing
(2017).

[45] D.Q. Nguyen, T. Vu, A. Tuan Nguyen, BERTweet: A pre-trained language model for English tweets, in: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 2020, pp. 9–14. doi:10.18653/v1/2020.emnlp-demos.2.

[46] A. Huang, Similarity measures for text document clustering, in: Proc. 6th New Zealand computer science research student conference (NZCSRSC2008),
Vol. 4, 2008, pp. 9–56.

[47] S. Vluymans, N. Mac Parthaláin, C. Cornelis, Y. Saeys, Weight selection strategies for ordered weighted average based fuzzy rough sets, Information
Sciences 501 (2019) 155–171.

[48] O.U. Lenz, D. Peralta, C. Cornelis, Scalable approximate FRNN-OWA classification, IEEE Transactions on Fuzzy Systems 28 (5) (2019) 929–938.
[49] O.U. Lenz, D. Peralta, C. Cornelis, fuzzy-rough-learn 0.1: a Python library for machine learning with fuzzy rough sets, in: IJCRS 2020: Proc. International

Joint Conference on Rough Sets, Vol. 12179 of Lecture Notes in Artificial Intelligence, 2020, pp. 491–499.
[50] T. Chua, W. Tan, A new fuzzy rule-based initialization method for k-nearest neighbor classifier, in: 2009 IEEE International Conference on Fuzzy

Systems, 2009, pp. 415–420. doi:10.1109/FUZZY.2009.5277215.
535

http://refhub.elsevier.com/S0020-0255(23)00054-3/h0235
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0235
http://refhub.elsevier.com/S0020-0255(23)00054-3/h0240

	Fuzzy rough nearest neighbour methods for detecting emotions, hate speech and irony
	1 Introduction
	2 Related Work
	2.1 SemEval competitions: tasks and winning solutions
	2.2 Interpretability in text analysis

	3 Methodology
	3.1 Data cleaning
	3.2 Tweet embedding
	3.3 Classification methods
	3.3.1 Similarity relation
	3.3.2 FRNN-OWA method
	3.3.3 Method based on FRNN-OWA regression
	3.3.4 Ensembles

	3.4 Evaluation methods

	4 Experiments
	4.1 Detecting the best setup for embedding methods
	4.2 Ensembles

	5 Evaluation on the test data
	5.1 Test results
	5.2 Error analysis

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


