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Abstract

In this short communication, we refute the conjecture by Fodor and Yager from [5] that the class of inclusion measures proposed
by Kitainik coincides with that of inclusion measures based on contrapositive fuzzy implications. In particular, we show that the
conjecture only holds when the considered universe of discourse is finite.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The generalization of the binary relation of inclusion between fuzzy sets has taken the attention of the scientific
community since the seminal paper of Lotfi Zadeh [10]. The reader can find many different ways in literature to
design such extensions under the name of measures of inclusion, but in this paper we focus on two of them: the ones
constructed by fuzzy implications [1,9] and those that satisfy the Kitainik axioms [6]. Both families of measures of
inclusion are related. Actually, in 2000 Jdnos Fodor and Ronald R. Yager formulated a conjecture in [5] that stated that
“the Kitainik axioms generalize the measures of inclusion based on contrapositive implication”. Such a conjecture
was formulated as a theorem and its proof was not included because “[...] can be easily derived from Theorem 6.3 in
(Kitainik, 1993) and the above Theorem 23”." This conjecture has had a significant impact in the literature and has
been assumed to be true by many authors (e.g., it appears in [2,3,7]). By the results of [4], it also pertains to Sinha and
Dougherty’s axioms [8], which define a class of inclusion measures that is strictly included into the one characterised
by Kitainik axioms. Sadly, as we will demonstrate in this short communication, Fodor and Yager’s conjecture fails in
general when the universe of discourse in which fuzzy sets are defined is infinite.
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The remainder of this paper is structured as follows: in Section 2, some preliminary definitions are recalled and
then, in Section 3, a counterexample of the mentioned conjecture is introduced. Moreover, the precise reason why
Fodor and Yager’s argument fails is identified, and it is shown that the conjecture holds in general only for finite
universes.

2. Preliminaries
2.1. Fuzzy sets

A fuzzy set A is a pair (%, ;t4) where % is a set (called universe) and 4 is a mapping from % to [0, 1] (called
membership function). .% (%) denotes the set of fuzzy sets on the universe %/ . Since the universe is always prefixed,
for the sake of simplicity, we identify fuzzy sets with membership functions (i.e., A = p4). On .% (%), we can extend
the usual crisp operations of union, intersection and complement as follows. Given two fuzzy sets A and B, we define

e (union) (AU B)(u) = max{A(u), B(u)}
e (intersection) (A N B)(u) = min{A(u), B(u)}
e (complement) A°(u) =1— A(u).

Certainly, there are many other options to extend those operators in fuzzy set theory (e.g., by using t-norms, t-
conorms, etc.) but these are the most common and the ones used in the fuzzy frameworks related to this paper, that is
in [5] and [6].

2.2. Measures of inclusion based on implications and on Kitainik’s axioms

In the eighties, many different authors supported the idea of measuring the inclusion between two fuzzy sets by
means of a fuzzy implication [1,9]. Specifically, a fuzzy implication is an operator 7 : [0, 1] x [0, 1] — [0, 1] such
that is decreasing in the first component, increasing in the second and satisfies the boundary conditions (0, 0) =
1(0,1)=1(1,1)=1and I(1,0) =0. A fuzzy implication is called contrapositive if / (x, y) =1(1 —y, 1 — x) for all
x,y€[0,1].

Definition 1. Given two fuzzy sets A, B € % (% ), the measure of inclusion of A in B with respect to a fuzzy impli-
cation [ is given by:

J1(A,B) = inf [(A®w), B@)).

Note that under the previous definition, two fuzzy implications define different measures of inclusion.
On the other hand, in 1987 Leonid Kitainik proposed a set of axioms aimed at characterizing those inclusion
measures based on implications, that is, inclusion measures defined by Definition 1. Those axioms are the following:

Definition 2 (/6]). A binary relation S: # (%) x F (%) — [0, 1] is called a K-measure of inclusion if it satisfies the
following axioms for all fuzzy sets A, B and C:

(K1) S(A, B) = S(B¢, A°).

(K2) S(A,BNC)=min{S(A, B),S(A, C)}.

(K3) If T: % — % is a bijective transformation on the universe, then S(A, B) = S(T(A), T(B)), where T(A) is
the fuzzy set defined by T(A)(u) = A(T (u)) forall u € % .

(K4) If A and B are crisp then S(A, B) =1 if and only if A C B.

(KS) If A and B are crisp then S(A, B) =0 if and only if A ;(_ B.

Independently from Kitainik’s work, in 1993 Sinha and Dougherty [8] also proposed a set of axioms for fuzzy inclu-
sion. It was shown in [4] that these axioms coincide with Kitainik’s, with the exception that in Sinha and Dougherty’s
framework, (K4) and (K5) are enforced for arbitrary fuzzy sets. Hence, the class of inclusion measures (referred to as
SD-measures in the remainder of this paper) defined by it is a (strict) subclass of the class of K-measures.
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3. A counter example of the Fodor-Yager conjecture

In 2000 Fodor and Yager stated the following conjecture [5, Theorem 24]:

Fodor-Yager conjecture:
A binary relation R: F# (%) x (%) — [0, 1] is a K-measure of inclusion § if and only if
there exists a contrapositive fuzzy implication / such that

S(A,B)=%;(A,B) = ian/ I1(A(u), B(u)) ,
UE

for all fuzzy sets A and B.

In other words, Fodor-Yager ensured that the axiomatic definition of Kitainik (Definition 2) is a subclass of the
measures of inclusion based on infimum of fuzzy implications (Definition 1). However, the authors did not provide
an explicit proof of that statement and, as we show in the following example, the conjecture is not true for fuzzy sets
defined on infinite universes.

Example 1. Let us consider the universe % = [0, 1] and the measure of inclusion defined for any pair of fuzzy sets
A, B e Z(0,1)) as:

S(A, B)=

0 if there exists u € % such that A(u) =1 and B(u) =0

if there does not exist u € % such that A(u) =1 and B(u) =0

1
3 AND

there exists a sequence {u, },eN € % such that lim,_, o A(u,)=1 and lim,_, oc B(u,)=0
1 otherwise.

Firstly, let us prove that § satisfies the five axioms of the Kitainik measures of inclusion.

(K1) Let us prove that S(A, B) = S(B€, A€) by distinguishing the three possible cases.
— Let us assume that S(A, B) =0, then:

S(A, B) =0 <= there exists u € % such that A(u) =1 and B(u) =0

<= there exists u € % such that B°(u) =1 and A°(u) =0
= S(B¢, A°)=0

— Let us assume that S(A, B) L then:

S(A,B) =

=§’

there does not exist u € % such that A(u) =1 and B(u) =0

1 AND
2 A there exists a sequence {u, },eN € % such that
lim,, 00 A(u,) =1 and lim,_, o B(u,) =0
there does not exist u € % such that B(u) =1 and A(u) =0
AND
—

there exists a sequence {u, },eN € % such that
lim, 500 B€(u,,) =1 and lim,,_, oo A(u,,) =0

1
< S(B, A°) = 5

— Let us assume that S(A, B) =1, then

S(A,B)=1 <> S(A, B) #0and S(A, B) # %
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. 1
&= S(B, A°) #£0 and S(B€, A°) # 3
= §(B, A9 =1

(K2) Let us prove that S(A, BN C) =min{S(A, B), S(A, C)} by distinguishing the three possible cases.
— Let us assume that S(A, BN C) =0, then:

S(A,BNC)=0 <= there exists u € % such that A(u) =1and (BNC)(u) =0

there exists u € % such that A(u) =1 and B(u) =0
< 4§ OR
there exists u € % such that A(u) =1 and C(u) =0
S(A,B)=0
< 4§ OR
S(A,C)=0

<= min{S(A, B), S(A,C)} =0

— Let us assume that S(A, BN C) = % then:

there does not exist u € 7/ such that A(u) =1and (BN C)(u) =0
1 AND
S(4,BNC) = 2 there exists a sequence {u, },cn € % such that
lim;,— 00 A(u,) =1 and lim,— oo BN C(u,) =0
for all u € % such that A(u) =1 then B(u) # 0 and C(u) #0
AND
there exists a sequence {u, },cN C % such that
lim,, o0 A(u,) =1 and lim,_, 5o B(u,) =0
OR
lim,, 00 A(uy) =1 and lim,_ o, C(u,,) =0
S(A,B) =% S(A,B)#0
< { AND OR AND
S(A,C)#0 S(A,C) =%

<= min{S(A, B), S(A,C)} = %

Note that in the last equivalence we have used that S(A, B) # 0 implies S(A, B) > %
— Let us assume that S(A, BN C) =1, then

1
S(A.BNC)=1 = S(A.BNC)#0and (A, BNC) # 5

<= min{S(A, B), S(A, C)} # 0 and min{S(A, B), S(A,C)} # %
<= min{S(A, B), S(A,C)} =1

(K3) Let T: % — % be abijective transformation on the universe and let us prove that S(T(A), T (B)) = S(A, B).
By definition and bijectivity of 7 we have that

0 if there exists u € % such that A(u) =1 and B(u) =0

if there does not exist u € % such that A(u) =1 and B(u) =0

1 AND
S(4,B) = 2 there exists a sequence {u, },en € % such that
lim, o A(u,) =1 and lim,_, o B(u,) =0
1 otherwise.
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0 if there exists u € % such that T(A(u)) =1 and T(B(u)) =0

if there does not exist u € % such that T(A(u)) =1 and T(B(u)) =0

_ l AND
]2 there exists a sequence {u, },eN € % such that
lim, 00 T(A(u,)) =1 and lim,, 0 T (B(u,)) =0
1 otherwise.

=S8(T(A), T(B))

(K4) Let us assume that A and B are crisp and let us prove that S(A, B) =1 if and only if A € B. Let us firstly note
that, if A and B are crisp sets then S(A, B) # % The reason is because the existence of a sequence {u, },eN S %
such that lim,,_, oo A(u,) =1 and lim,,_, oc B(u,) = 0, implies the existence of no € N such that A(u,) =1 and
B(u,) =0 for all n > ng. Then, if such a sequence exists, the first of the conditions to be S(A, B) = % does not
hold (i.e., the condition “if there does not exist u € % such that A(u) =1 and B(u) =07).

Once we know that for crisp sets S(A, B) # % then we have: S(A, B) =1 if and only if S(A, B) # 0 if and
only if for all u € % such that A(u) = 1 then B(u) # 0 if and only if (since B is crisp) for all u € % such that
A(u) =1then B(u) =1if and only if A C B.

(K5) Let us assume that A and B are crisp and let us prove that S(A, B) =0 if and only if A ¢ B. By definition,
S(A, B) =0 if and only if there exists u € % such that A(u) =1 and B(u«) = 0, which is equivalent to say that
A¢ B.

Therefore, we have that S satisfies the five axioms of Kitainik and S is a K-measure of inclusion.
Let us prove now that there is no fuzzy implication 7 : [0, 1] x [0, 1] — [0, 1] such that:

S(A, B) = inf I1(A(u), B(u)).
N4

Let us proceed by reductio ad absurdum and let us assume that such an implication 7 exists. Then, I has to satisfy
the following property for all pairs x, y € [0, 1]: given the fuzzy sets A,(#) =x and A,(u) =y forall u € %, then

S(Ax,Ay)= inf I(Ax(u),Ay(u)) = inf I(x,y) =1(x,y).
uew ’ uew

By definition of S, the equality S(A,, Ay) =0 holds only if Ay = Ay and A, = Ag. As aresult, we have I(x,y) =0
if and only if x =1 and y = 0. On the other hand, note that the condition S(Ay, Ay) = % never holds for those
“constant” fuzzy sets A, and A, since the existence of the sequence {u,},cN € % such that lim,, .o Ax(1,) =1 and
lim,, oo Ay (1) = 0, implies that lim,, oo Ay (#,) =x =1 and lim;, . Ay (u,) = y = 0, which contradicts the first
condition of that case (i.e., there is not u € % such that A, (u) = 1and A (u) = 0). Then, if x # 1 or y # 0, necessarily
S(Ax, Ay) =1=1(x,y) and vice-versa. In other words, the only possible implication is the drastic implication

10 ifx=1landy=0
I(x,y) = { 1 otherwise.

Consequently, if the Fodor-Yager conjecture holds, necessarily we have that S(A, B) # % for every pair of fuzzy sets

A and B. Finally, we reach the contradiction by showing an example of two fuzzy sets A and B such that S(A, B) = %
Let us recall that %7 = [0, 1]. Let A and B be the fuzzy sets defined by A(u) =1 for all u € [0, 1] and

u ifu#0
B(”‘)_{% ifu=0

Then, it is obvious that for all u € % such that A(u) = 1 then, B(u) # 0 and moreover, the sequence u, =

{ﬁ ]neN < [0, 1] satisfies that 1imy— o0 A () = limy o0 1 = 1 and limy— 00 B(ty) = lim, o0 7 = 0. Then, we

can conclude that S(A, B) = % and that the Fodor-Yager conjecture does not hold for S. 0O

The previous counterexample states that the Fodor-Yager conjecture is wrong in general. Taking a look at [5], the
impression is that the conjecture may originate from a previous theorem that fails (in an item) when the universe is
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infinite. Firstly, let us recall a family of fuzzy sets that is necessary to understand the theorem: given « € [0, 1] and
uo € % , the fuzzy set o/, (4,) is defined as

o N ifu=ug
xtuol =10 otherwise.

Secondly, let us recall the statement of the mentioned result:

[5, Theorem 23] For any K-measure of inclusion S on .% (%) the following conditions are satisfied”: [...]
(iv) S(A, B) =infyeq S (AW y(u), (1 = By w))

Example 1 is also a counterexample of [5, Theorem 23 item (iv)].

Example 2. Let us consider again the K-measure of inclusion given in Example 1 and the fuzzy sets A and B given
at the end of the mentioned example. On the one hand, as we saw previously, S(A, B) = % On the other hand, since
for all ug € (0, 1] we have

1 if u =ug

ifu=ug
Au0) y fuo) (1) = { 0 otherwise.

— c — u
(1= Buo) xiug))" (u) = { 1 otherwise,

we have S(A(u)x{u}, a - B(u));{u}) =1 for all u € (0,1]. In addition, for u = 0, it is easy to check that

S(A(u)x{u}, a1- B(u))f({u}) =1 as well. As a result, we have that
. . 1
Jn S(A@; 0, (1= B@)yqy) = inf S(A@yaw, (1= Bw)y) =1#5=54,B) O

To end the paper, two things are worth mentioning. First, we may see that [5, Theorem 23 item (iv)] is true for fuzzy
sets defined on a finite universe %, since for all pairs of fuzzy sets A and B we have that A(u) = U,c A1)y (u)»

B(u) =Nyeq (1 — B(u));(u), and then:

S(A,B)=S U AU) y @) ﬂ (1= BW)su | = inng/S(A(u)X(u),(l —B(u))f((u))).
uew N4 uew

Note that in the last equality we have used that 7%/ is finite to apply axiom (K2). From this last mentioned property,
the Fodor-Yager conjecture can easily be derived for the case where fuzzy sets are defined on finite universes.

Finally, the analogous characterization of Sinha-Dougherty axioms obtained in [4] is not affected by the above
counterexample, since the finiteness of U was included as hypothesis in the statement:

Theorem 1. [4] Given a finite universe U, a binary relation R: F (%) x F (%) — [0, 1] is an SD-measure of
inclusion S if and only if there exists a contrapositive fuzzy implication I that additionally satisfies, for x, y in [0, 1],

) x=y<eIx,y=1
I2) x=1and y=0&1(x,y)=0

such that
S(A,B)=91(A,B) = ian/ I(A(u), B(u)) ,
ue

for all fuzzy sets A and B.

2 Only the relevant item is included.
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