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Inconsistency in classification and regression problems occurs when instances that relate in 
a certain way on the condition attributes, do not follow the same relation on the decision 
attribute. It typically appears as a result of perturbation in data caused by incomplete knowledge 
(missing attributes) or by random effects that occur during data generation (instability in 
the assessment of decision attribute values). Inconsistencies with respect to a crisp preorder 
relation (expressing either dominance or indiscernibility between instances) can be handled with 
set-theoretic approaches like rough sets and by using statistical/machine learning approaches 
that involve optimization methods. In particular, the Kotłowski-Słowiński (KS) approach relabels 
the objects from a dataset such that inconsistencies are removed, and such that the new class 
labels are as close as possible to the original ones in terms of a given loss function. In this paper, 
we generalize the KS approach to handle inconsistency determined by a fuzzy preorder relation 
rather than a crisp one. The method produces a consistent fuzzy relabeling of the instances and 
may be used as a preprocessing tool with algorithms for binary classification and regression. As 
the obtained fuzzy sets can be represented as unions of meaningful simple fuzzy sets or granules, 
we call them granular approximations. We provide statistical foundations for our method, develop 
appropriate optimization procedures, provide didactic examples, and prove several important 
properties.

1. Introduction

Ordinal classification (also called ordinal regression) problems constitute a very important part of machine learning and statistical 
analysis [1,2]. In ordinal classification, the goal is to predict for a certain instance 𝑢 from set 𝑈 , one of 𝐾 different ordinal class labels 
𝑦 ∈ {1, … , 𝐾}. Usually, 𝑢 is characterized by its values for a given set of condition attributes, while 𝑦 is called a decision attribute. 
Ordinal classification problems take into account the existing ordering on the decision attribute. In some cases, an ordering also exists 
on the condition attributes. One way to incorporate such knowledge in the analysis is through so-called monotonicity constraints. For 
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a given preorder (dominance) relation on the set of instances 𝑈 based on the condition attributes, the monotonicity constraints can 
be formulated as follows: if instance 𝑢1 dominates (is dominated by) 𝑢2 on the condition attributes, then 𝑢1 should be assigned to the 
same or to a better (to a worse) decision class than 𝑢2. In this case, we say that 𝑢1 is consistent with 𝑢2 w.r.t. the dominance relation. 
Obviously, consistency is a symmetric relation, and instances that are incomparable on condition attributes are consistent by default.

Ordinal classification problems that include monotonicity constraints are called monotone classification problems. They emerge 
in many areas, such as medical diagnosis [3], bankruptcy risk estimation [4], house pricing [5], and others. A comprehensive survey 
of monotone classification methods is given in [6].

In practice, not all pairs of instances satisfy the monotonicity constraints (are not consistent) due to some imperfections of 
ordinal classification data, like missing attributes or instability of the assessment of decision attribute values at the data generation 
stage. One way of dealing with this problem is by adapting machine learning algorithms to mitigate the effect of monotonicity 
constraint violations, as was done in [7] for monotonic fuzzy nearest neighbor classification. One may also opt to generalize the label 
space, such that each instance is assigned a superset of possible labels, as was considered e.g. in [8]. An application-independent 
approach that operates in the original label space is to perform some initial preprocessing of the data to explicitly enforce the 
monotonicity constraints. The most basic and intuitive method to handle inconsistencies in data is the rough set approach [9]. For 
a given decision class in a classification problem, the approach outputs lower and upper approximations of that class. The lower 
approximation contains instances from the decision class that are consistent with all other instances, while the upper approximation 
contains instances that relate to instances from the decision class. The original rough set approach handles inconsistencies w.r.t. an 
equivalence (indiscernibility) relation. To make it applicable to monotone classification problems, Greco et al. [10] extended the 
original rough set theory with their Dominance-based Rough Set Approach (DRSA) which replaces the indiscernibility relation with 
a dominance relation. Since the introduction of DRSA, the original rough set theory is usually referred to as Indiscernibility-based 
Rough Set Approach (IRSA). Recently, the two were integrated into the Preorder-based Rough Set Approach (PRSA) [11].

The main limitation of the existing methods, which are designed in the scope of rough set theory, is that they eliminate 
inconsistencies in an extreme way through the lower and upper approximations. All inconsistent pairs are either removed from 
the decision class (lower approximation) or kept in the decision class (upper approximation).

A more comprehensive analysis of monotone classification from the statistical learning point of view was given by Kotłowski and 
Słowiński [12]. They provided statistical foundations of the monotonicity constraints and developed a machine learning method to 
incorporate them into data analysis. This method removes inconsistencies in data (“monotonizes” them) as a result of an optimization 
procedure that minimizes the cost of label changes in the decision attribute. It produces a new set of labels called a monotone 
approximation. This approach generalizes standard rough sets, provides a probabilistic view of them, and corrects inconsistencies in 
a non-extreme and theoretically optimal way. The approach found its application in the same areas as DRSA [13], as well as in the 
development of rule induction and ensemble rules methods [14]. A well-known case of the approach is the isotonic regression model 
[15] which uses weighted mean squared error as its empirical risk. In the remainder of the paper, we refer to this method as KS 
approach.

On the other hand, fuzzy logic studies the gradual truth of logical statements, and is used extensively in modeling imprecise 
and vague information. Two ways to utilize fuzzy logic in data analysis are through fuzzy relations and fuzzy membership degrees 
in decision classes. Fuzzy relations are able to model relationships between numerical vectors. This is suitable to model similarity 
between numerical vectors or other structures (graphs, strings, DNA chains ...).

Fuzzy membership degrees allow that an instance can belong to multiple decision classes to different degrees. This is important 
in applications where the observed decisions are crisp, while the actual decisions exhibit fuzzy graduality. An example is a movie 
streaming service, where users grade movies in a binary way (“like” or “dislike”), while the actual information is gradual since a user 
may prefer one movie over another despite giving them both a “like” grade.

The integration of fuzzy logic and IRSA was first proposed by Dubois and Prade [16], allowing to approximate fuzzy sets using a 
fuzzy similarity relation. A similar extension of DRSA to fuzzy set theory was proposed by Greco et al. [17].

This article is motivated by the KS approach. Its main innovation is that we generalize the monotonicity constraints using fuzzy 
relations while the ordinal classes are replaced with fuzzy membership degrees. Instead of a crisp preorder relation (or an equivalence 
relation if it is symmetric), we now consider a fuzzy 𝑇 -preorder relation to model the relationship between different instances on the 
condition attributes, where 𝑇 refers to a given 𝑡-norm that models conjunction in fuzzy logic. On the other hand, in our approach, the 
decision attribute is represented as a fuzzy set, i.e., it takes values from the interval [0, 1]. Hence, it is appropriate for problems where 
the decision attribute can be modeled using values from this interval; concretely, for binary classification and regression problems. 
Our proposal generalizes the KS approach for the case of binary classification, and for specific loss functions (in particular, squared 
error loss and quantile loss). It also generalizes the lower and upper approximation from fuzzy rough set theory, as they are obtained 
as special cases when the quantile loss function is used.

Just like the KS approach [12], our proposal is also interesting from the granular computing point of view. Granular computing 
is a paradigm that involves a partition of information into meaningful groups, classes, or clusters called granules [18,19], and which 
has been applied to diverse models in data analysis. For example, in [20] and [21], granular computing using neighborhood systems 
for the interpretation of granules was studied, while in [22,23], granular aspects of rough set theory were examined.

In particular, the sets obtained with the KS approach, as well as with the novel approach, possess the property of granular 
representation: they can be represented as unions of meaningful granules [11,24]. Such sets are called granularly representable [11]. 
Due to the granular properties of our new approach, we call its result a granular approximation.

What distinguishes our method from those based on fuzzy rough sets is that it corrects inconsistency in an optimal way, producing 
250

granular approximations that are minimally different from the approximated fuzzy set (w.r.t. the adopted measure of difference, 
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Fig. 1. Possible applications of the granular approximations.

which, in our case, is a loss function), whereas with fuzzy rough sets, the approximations are defined explicitly without minimizing 
any measure of difference between the approximations and the original fuzzy set.

In Fig. 1, we position our contribution w.r.t. potential applications. Correcting inconsistency by means of our method can be 
seen as a data preprocessing step, and the granular approximation may be used in the same applications as those where fuzzy rough 
sets are used. For example, fuzzy rough sets are applied in fuzzy rule induction methods [25,26], instance-based methods [27,28], 
instance selection methods [29] and attribute selection methods [30].

This paper is also an example of the successful integration of ideas and contributions of rough sets, fuzzy sets, and machine 
learning. Handling inconsistency and granulation are the main contributions of rough sets. The theory of fuzzy sets allows us to use 
fuzzy relations to model a non-binary interaction among instances. Finally, including statistical/machine learning allows us to make 
data consistent, incurring the least possible cost (w.r.t. some loss function) using optimization methods.

The remainder of the paper is organized as follows. In Section 2, we recall the required preliminaries about statistical learning 
theory, monotone approximations, fuzzy logic, and fuzzy rough sets. In Section 3, we define inconsistencies and illustrate how they 
occur in real data by didactic example. In Section 4, we develop the statistical foundations of granular approximations. Section 5
deals with the optimization problems that output granular approximations, while some important properties are proven in Section 6. 
Section 7 contains our conclusion and outlines future work.

In Appendix A–B, we deal with the dual formulations of the optimization problems introduced in Section 5. Using the duality 
theory, we obtain greedy algorithms for the optimization problems from Section 5 that allow us to prove Proposition 6.3.

2. Preliminaries

2.1. Statistical learning for monotone classification

A random variable  is a mapping from a probability space to a certain codomain 𝑋. If the codomain is a subset of the real 
numbers,  is usually characterized with a cumulative distribution function (CDF) defined as 𝐹 = 𝑃 ( ≤ 𝑥) for 𝑥 ∈ 𝑋. A CDF is 
a non-decreasing and right-continuous function with codomain [0, 1]. Based on the CDF, a quantile function may be defined as 
follows: 𝑄 (𝑝) = inf{𝑦; 𝐹 (𝑦) ≥ 𝑝} for 0 < 𝑝 < 1. In other words, if 𝑝 is in the image of 𝐹 , then 𝑄 (𝑝) is the smallest value for which 
𝑃 ( ≤𝑄 (𝑝)) = 𝑝. The value 𝑄 ( 12 ) is called the median of  . The expected value of  can be expressed using the quantile function 
[31]:

𝐸() =

1

∫
0

𝑄 (𝑝)𝑑𝑝. (1)

We say that 1 stochastically dominates 2 if 𝐹1
(𝑥) ≥ 𝐹2

(𝑥) for all 𝑥 ∈𝑋.

Proposition 2.1. [32] For two random variables 1 and 2, it holds that

∀𝑥 ∈𝑋,𝐹1
(𝑥) ≤ 𝐹2

(𝑥)⇔ ∀𝑝 ∈ (0,1),𝑄1
(𝑝) ≥𝑄2

(𝑝).
251

The above proposition states that stochastic dominance can be characterized using quantile functions instead of CDFs.
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We now examine the prediction problem. Let  and  be two random variables with codomains 𝑋 and 𝑌 respectively. When 
making predictions, we wish to find a function ℎ such that ℎ() is close to  , i.e., it predicts values of  for given values of  . 
Formally, let 𝐿 ∶ 𝑌 × 𝑌 →ℝ+ be a loss function. A prediction problem consists in finding a function ℎ ∶𝑋→ 𝑌 such that the risk

𝑅(ℎ) =𝐸(𝐿( , ℎ()))

is minimized. The optimal ℎ, denoted by ℎ∗, is called the Bayes predictor. The relationship between  and  may be represented by 
a family of random variables =𝑥, which stands for variable  conditioned on  = 𝑥. Such a random variable, for a fixed 𝑥, may be 
described by its CDF:

𝐹|=𝑥(𝑦) = 𝑃 ( ≤ 𝑦| = 𝑥).

Searching for an optimal prediction function ℎ may be seen as an estimation of certain characteristics of the family of random 
variables =𝑥. For example, when the loss function is the squared error loss (also known as quadratic loss or 𝑙2 loss)

𝐿(𝑦, 𝑦̂) = (𝑦− 𝑦̂)2, (2)

for 𝑦, 𝑦̂ ∈ 𝑌 and 𝑌 =ℝ, then the Bayes predictor is ℎ∗(𝑥) =𝐸(| = 𝑥), i.e., the conditional mean, while if the loss function is absolute 
error loss

𝐿(𝑦, 𝑦̂) = |𝑦− 𝑦̂|,
then the Bayes predictor is ℎ∗(𝑥) =𝑄|=𝑥(

1
2 ), i.e., the conditional median [33]. The previous examples show that a Bayes predictor 

is a characteristic of family =𝑥 (conditional mean and median in the examples).
In practice, the random variables  and  are unknown and we only have their realizations 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑛. Our goal is 

then to minimize the empirical risk:

𝑅̂(ℎ) = 1
𝑛

𝑛∑
𝑖=1
𝐿(𝑦𝑖, ℎ(𝑥𝑖)). (3)

Minimization of the empirical risk is one form of learning and it basically amounts to an estimation of the unknown Bayes predictor. 
The empirical risk for the squared error loss is called the mean squared error, while for the absolute error loss is called the mean 
absolute error. Also, since multiplying an objective function with a positive constant does not change the solution, factor 1

𝑛
is 

often omitted in (3). The examples of Bayes predictors from before show that a Bayes predictor is a characteristic of family =𝑥
(conditional mean and median in the examples), which means that the learning process leads to an estimation of those characteristics.

Kotłowski and Słowiński [12] introduced a statistical framework for monotone classification. In this case, it is assumed that there 
is a preorder relation ⪰ on codomain 𝑋 of  while 𝑌 consists of a finite number of totally ordered values that distinguish different 
ordinal classes. Denote these classes by 1, … , 𝐾 . The monotonicity constraint states that if 𝑥 ⪰ 𝑥′ then 𝑥 has to belong to at least 
the same class as 𝑥′. This is also called the Pareto principle in decision theory. Let 𝐾−1 = {1, … , 𝐾 − 1}. In probabilistic terms, the 
monotonicity constraint says that 𝑥 ⪰ 𝑥′ implies

∀𝑘 ∈𝐾−1, 𝑃 ( ≤ 𝑘| = 𝑥) ≤ 𝑃 ( ≤ 𝑘| = 𝑥′)
⇔ ∀𝑘 ∈𝐾−1, 𝐹|=𝑥(𝑘) ≤ 𝐹|=𝑥′ (𝑘)
⇔ ∀𝑝 ∈ (0,1), 𝑄|=𝑥(𝑝) ≥𝑄|=𝑥′ (𝑝).

(4)

The previous expression means that the probability that 𝑥 will be assigned to at most class 𝑘 is smaller or equal to that 𝑥′ will be 
assigned to the same class. A family =𝑥 is monotonically constrained if (4) is satisfied. A prediction function ℎ is called monotone 
if 𝑥 ⪰ 𝑥′ ⟹ ℎ(𝑥) ≥ ℎ(𝑥′). The goal of monotone classification is to find a proper monotone ℎ under the assumption that the family 
=𝑥 is monotonically constrained. Since ℎ, as the output of the learning process, should be as close as possible to the Bayes predictor 
ℎ∗, we require that ℎ∗ is also monotone. Given that the form of ℎ∗ depends on the loss function, choosing a proper loss function 
is crucial for the learning process. A loss function for which the Bayes predictor is monotone is called a monotone loss function. 
Kotłowski and Słowiński [12] showed that both squared error loss and absolute error loss are monotone loss functions. They also 
examined a parametrized family of monotone loss functions called 𝑝-quantile loss defined as:

𝐿𝑝(𝑦, 𝑦̂) = (𝑦− 𝑦̂)(𝑝− 𝟏𝑦−𝑦̂<0) =
{
𝑝|𝑦− 𝑦̂| if 𝑦− 𝑦̂ > 0,
(1 − 𝑝)|𝑦− 𝑦̂| otherwise,

(5)

for 𝑝 ∈ [0, 1], where 𝟏 stands for the indicator function. The name 𝑝-quantile loss is used since the Bayes predictor for such loss 
function is the conditional 𝑝-quantile ℎ∗𝑝(𝑥) =𝑄|=𝑥(𝑝). For 𝑝 = 1

2 we have that 𝐿1∕2 is equivalent to the absolute error loss. For the 
𝑝-quantile loss, we have the following important result proved in [12].

Proposition 2.2. Let 𝑠 ∶  →ℝ be an increasing function. Then the loss functions 𝐿𝑝(𝑦, 𝑦̂) and 𝐿𝑝(𝑠(𝑦), 𝑠(𝑦̂)) have the same Bayes predictor.
252

Proposition 2.2 states that a different scaling of ordinal classes does not change the Bayes predictor, only the order matters.
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Table 1

Some common 𝑡-norms and their R-implicators.

Name Definition R-implicator

Minimum 𝑇𝑀 (𝑥, 𝑦) = min(𝑥, 𝑦) 𝐼𝑇𝑀 (𝑥, 𝑦) =

{
1 if 𝑥 ≤ 𝑦
𝑦 otherwise

Product 𝑇𝑃 (𝑥, 𝑦) = 𝑥𝑦 𝐼𝑇𝑃 (𝑥, 𝑦) =

{
1 if 𝑥 ≤ 𝑦
𝑦

𝑥
otherwise

Łukasiewicz 𝑇𝐿(𝑥, 𝑦) = max(0, 𝑥+ 𝑦− 1) 𝐼𝑇𝐿 (𝑥, 𝑦) = min(1,1 − 𝑥+ 𝑦)

Drastic 𝑇𝐷(𝑥, 𝑦) =

{
min(𝑥, 𝑦) if max(𝑥, 𝑦) = 1

0 otherwise
𝐼𝑇𝐷 (𝑥, 𝑦) =

{
𝑦 if 𝑥 = 1
1 otherwise

Nilpotent 
minimum

𝑇𝑛𝑀 (𝑥, 𝑦) =

{
min(𝑥, 𝑦) if 𝑥+ 𝑦 > 1

0 otherwise
𝐼𝑇𝑛𝑀 (𝑥, 𝑦) =

{
1 if 𝑥 ≤ 𝑦

max(1 − 𝑥, 𝑦) otherwise

2.2. Monotone approximation

In order to incorporate monotonicity constraints into the learning process, the KS approach uses an optimization procedure to 
“monotonize” data by eliminating inconsistencies. Let 𝑦̄𝑖, 𝑖 = 1, … , 𝑛, be the observed ordinal labels that do not necessarily satisfy 
monotonicity constraints due to possible inconsistency, and let 𝑦̂𝑖, 𝑖 = 1, … , 𝑛, be the values that we want to learn and which satisfy 
the constraints. Then, for a given monotone loss function 𝐿, the optimization problem can be formulated as

minimize
𝑛∑
𝑖=1
𝐿(𝑦̄𝑖, 𝑦̂𝑖)

subject to 𝑥𝑖 ⪰ 𝑥𝑗 ⟹ 𝑦̂𝑖 ≥ 𝑦̂𝑗 , 𝑖, 𝑗 = 1,… , 𝑛

𝑦̂𝑖 ∈ {1,… ,𝐾}, 𝑖 = 1,… , 𝑛

(6)

In other words, one wants to calculate new labels that are as close as possible to the original ones w.r.t. loss function 𝐿, and which 
satisfy the monotonicity constraints. The obtained labels are called a monotone approximation of the original ones. The same authors 
showed that when 𝐿 is monotone, then problem (6) can be solved using linear programming. Moreover, the solutions of the linear 
optimization problem will always be integers due to the unimodularity of the constraint matrix [34].

2.3. Fuzzy logic connectives

The definitions and terminology in this subsection are based on [35]. Recall that a 𝑡-norm 𝑇 ∶ [0, 1]2 → [0, 1] is a binary operator 
which is commutative, associative, non-decreasing in both arguments, and for which it holds that ∀𝑥 ∈ [0, 1], 𝑇 (𝑥, 1) = 𝑥. Since a 
𝑡-norm is associative, we may extend it unambiguously to a [0, 1]𝑛 → [0, 1] mapping for any 𝑛 > 2. Some commonly used 𝑡-norms are 
listed in Table 1.

We say that 𝑥 ∈ [0, 1] is a nilpotent element of a 𝑡-norm 𝑇 if there exists a natural number 𝑛 such that

𝑇 (𝑥,… , 𝑥
⏟⏟⏟
𝑛 times

) = 0.

A 𝑡-norm is called nilpotent if it is continuous and every 𝑥 ∈ (0, 1) is a nilpotent element. For example, 𝑇𝐿 from Table 1 is nilpotent 
while the others are not. A 𝑡-norm is strict if it is continuous and strictly increasing in both arguments. 𝑇𝑃 from Table 1 is strict while 
the others are not.

We call a 𝑡-norm Archimedean if

(∀(𝑥, 𝑦) ∈ (0,1)2)(∃𝑛 ≥ 2)(𝑇 (𝑥,… , 𝑥
⏟⏟⏟
𝑛 times

) < 𝑦).

𝑇𝑃 , 𝑇𝐿 and 𝑇𝐷 from Table 1 are Archimedean, while 𝑇𝑀 and 𝑇𝑛𝑀 are not.
A 𝑡-norm is a continuous Archimedean 𝑡-norm if and only if it is either strict or nilpotent.
We say that two 𝑡-norms 𝑇1 and 𝑇2 are isomorphic if there exists a bijection 𝜑 ∶ [0, 1] → [0, 1] such that 𝑇1 = 𝜑−1(𝑇2(𝜑(𝑥), 𝜑(𝑦))).

Proposition 2.3. A strict 𝑡-norm is isomorphic to 𝑇𝑃 while a nilpotent 𝑡-norm is isomorphic to 𝑇𝐿.

We denote with

𝑇𝐿,𝜑 = 𝜑−1(max(𝜑(𝑥) +𝜑(𝑦) − 1,0)) (7)

a family of nilpotent 𝑡-norms, i.e., 𝑡-norms that are isomorphic to 𝑇𝐿 with bijection 𝜑 and we denote with
253

𝑇𝑃 ,𝜑 = 𝜑−1(𝜑(𝑥)𝜑(𝑦)) (8)
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a family of strict 𝑡-norms, i.e., 𝑡-norms that are isomorphic to 𝑇𝐿 with bijection 𝜑.
We say that a 𝑡-norm is 𝐷-convex if its partial mappings are convex functions. 𝑇𝑃 and 𝑇𝐿 from Table 1 are 𝐷-convex, while the 

others are not. More details on the characterization of 𝐷-convex 𝑡-norms can be found in [11].
An implicator (or fuzzy implication) 𝐼 ∶ [0, 1]2 → [0, 1] is a binary operator which is non-increasing in the first component, 

non-decreasing in the second one and for which it holds that 𝐼(1, 0) = 0 and 𝐼(0, 0) = 𝐼(0, 1) = 𝐼(1, 1) = 1.
The residuation property holds for a 𝑡-norm 𝑇 and an implicator 𝐼 if

𝑇 (𝑥, 𝑦) ≤ 𝑧⇔ 𝑥 ≤ 𝐼(𝑦, 𝑧). (9)

It is satisfied if and only if 𝑇 is left-continuous and 𝐼 is defined as the residual implicator (R-implicator) of 𝑇 , that is

𝐼𝑇 (𝑥, 𝑦) = sup{𝜆 ∈ [0,1];𝑇 (𝑥,𝜆) ≤ 𝑦}.
The very right column of Table 1 shows the residual implicators of the corresponding 𝑡-norms. Note that all of them, except 𝐼𝑇𝐷 , 

satisfy the residuation property. Implicators that satisfy the residuation principle have the ordering property

𝑥 ≤ 𝑦⇔ 𝐼(𝑥, 𝑦) = 1. (10)

Given a [0, 1] → [0, 1] bijection 𝜑, the residual implicators of nilpotent and strict 𝑡-norms 𝑇𝐿,𝜑 and 𝑇𝑃 ,𝜑 will be denoted by 𝐼𝐿,𝜑 and 
𝐼𝑃 ,𝜑.

A negator (or fuzzy negation) 𝑁 ∶ [0, 1] → [0, 1] is a unary non-increasing operator for which it holds that 𝑁(0) = 1 and 𝑁(1) = 0. A 
negator is involutive if 𝑁(𝑁(𝑥)) = 𝑥 for all 𝑥 ∈ [0, 1]. The standard negator is defined as 𝑁𝑠(𝑥) = 1 − 𝑥.

For a left continuous 𝑡-norm 𝑇 and its R-implicator 𝐼 , we define the negator induced by 𝐼 as 𝑁(𝑥) = 𝐼(𝑥, 0). We will call a triplet 
(𝑇 , 𝐼, 𝑁) obtained as previously explained a residual triplet. If a 𝑡-norm from a residual triplet is continuous and Archimedean, then 
the negator of the triplet is involutive if and only if the 𝑡-norm is nilpotent. In such case, the negator has the form

𝑁𝜑(𝑥) = 𝜑−1(1 −𝜑(𝑥)).

Proposition 2.4. For a residual triplet, the following holds:

𝐼(𝑇 (𝑥, 𝑦), 𝑧) = 𝐼(𝑥, 𝐼(𝑦, 𝑧)).

As a consequence, when 𝑧 = 0,

𝑁(𝑇 (𝑥, 𝑦)) = 𝐼(𝑥,𝑁(𝑦)).

The standard negator is obtained when, for example, the 𝑡-norm is the Łukasiewicz one. In general, a 𝑡-norm for which the induced 
negator of its R-implicator is involutive is called an IMTL 𝑡-norm. We will call a residual triplet (𝑇 , 𝐼, 𝑁) that is generated with an 
IMTL 𝑡-norm, an IMTL triplet.

2.4. Fuzzy sets and fuzzy relations

Given a non-empty set 𝑈 , a fuzzy set 𝐴 in 𝑈 is an ordered pair (𝑈, 𝑚𝐴), where 𝑚𝐴 ∶ 𝑈 → [0, 1] is a membership function that 
indicates how much an element from 𝑈 is contained in 𝐴. Instead of 𝑚𝐴(𝑢), the membership degree is often written as 𝐴(𝑢). If the 
image of 𝑚𝐴 is {0, 1}, we obtain a crisp or classical set. For a negator 𝑁 , the fuzzy complement 𝑐𝑜𝐴 is defined as 𝑐𝑜𝐴(𝑢) =𝑁(𝐴(𝑢))
for 𝑢 ∈ 𝑈 . If 𝐴 is crisp then 𝑐𝑜𝐴 reduces to the standard complement. For 𝛼 ∈ (0, 1], the 𝛼-level set of fuzzy set 𝐴 is a crisp set defined 
as 𝐴𝛼 = {𝑢 ∈𝑈 ; 𝐴(𝑢) ≥ 𝛼}.

A fuzzy relation 𝑅 on 𝑈 is a fuzzy set on 𝑈 ×𝑈 , i.e., a mapping 𝑅 ∶𝑈 ×𝑈 → [0, 1] which indicates how much two elements from 
𝑈 are related. Some relevant properties of fuzzy relations include:

• 𝑅 is reflexive if ∀𝑢 ∈𝑈, 𝑅(𝑢, 𝑢) = 1.
• 𝑅 is symmetric if ∀𝑢, 𝑣 ∈𝑈, 𝑅(𝑢, 𝑣) =𝑅(𝑣, 𝑢).
• 𝑅 is 𝑇 -transitive w.r.t. 𝑡-norm 𝑇 if ∀𝑢, 𝑣, 𝑤 ∈𝑈 it holds that
𝑇 (𝑅(𝑢, 𝑣), 𝑅(𝑣, 𝑤)) ≤𝑅(𝑢, 𝑤).

A reflexive and 𝑇 -transitive fuzzy relation is called a 𝑇 -preorder relation while a symmetric 𝑇 -preorder relation is called a 
𝑇 -equivalence.

To recall some of these fuzzy relations, we assume that instances from 𝑈 are described with a finite set of numerical attributes 𝑄. 
Let 𝑢(𝑞) and 𝑣(𝑞) be the evaluations of instances 𝑢 and 𝑣 on attribute 𝑞. For a gain-type1 attribute 𝑞 ∈𝑄, an example, given in [36], of 
a 𝑇𝐿-preorder relation (expressing dominance) on attribute 𝑞, is
254

1 An attribute is considered to be gain-type when the higher its evaluation, the better it is considered to be. In the opposite case, we call it a cost-type attribute.
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𝑅𝛾𝑞 (𝑢, 𝑣) = max
(
min

(
1 − 𝛾 𝑣

(𝑞) − 𝑢(𝑞)
𝑟𝑎𝑛𝑔𝑒(𝑞)

,1
)
,0
)
, (11)

where 𝛾 is a positive parameter and 𝑟𝑎𝑛𝑔𝑒(𝑞) is the difference between the maximal and minimal value of 𝑞. For a cost-type attribute 
𝑞 ∈𝑄, the analogous 𝑇𝐿-preorder relation is

𝑅𝛾𝑞 (𝑢, 𝑣) = max
(
min

(
1 − 𝛾 𝑢

(𝑞) − 𝑣(𝑞)
𝑟𝑎𝑛𝑔𝑒(𝑞)

,1
)
,0
)
. (12)

The overall relation considering all attributes jointly may be defined as

𝑅𝛾 (𝑢, 𝑣) = min
𝑞∈𝑄
𝑅𝛾𝑞(𝑢, 𝑣). (13)

An example of a 𝑇𝐿-equivalence relation is called triangular similarity, defined as

𝑅𝛾 (𝑢, 𝑣) = min
𝑞∈𝑄

max
(
1 − 𝛾 |𝑢(𝑞) − 𝑣(𝑞)|
𝑟𝑎𝑛𝑔𝑒(𝑞)

,0
)
. (14)

More details on such similarity relations are provided in [36].
Finally, note that the introduced fuzzy relations depend on the parameter 𝛾 . If 𝛾 tends to infinity, these fuzzy relations are reduced 

to the usual crisp relations (indiscernibility and dominance relations, as discussed before). The value of parameter 𝛾 may depend 
on the use of inconsistency correction techniques. For example, if they are used in predictive machine learning models, 𝛾 can be 
considered as a model’s hyperparameter and can be tuned using various techniques (for a state of the art survey on the subject see, 
e.g., [37]).

2.5. Fuzzy rough approximations and granular representability

Let 𝑈 be a set of instances, 𝐴 a fuzzy set on 𝑈 , and let 𝑅 be a 𝑇 -preorder relation on 𝑈 . The fuzzy PRSA lower and upper 
approximations of 𝐴 are fuzzy sets for which the membership function is defined as:

aprmin,𝐼
𝑅

(𝐴)(𝑢) = min{𝐼(𝑅(𝑣, 𝑢),𝐴(𝑣));𝑣 ∈𝑈}

aprmax,𝑇
𝑅

(𝐴)(𝑢) = max{𝑇 (𝑅(𝑢, 𝑣),𝐴(𝑣));𝑣 ∈𝑈},
(15)

for 𝑢 ∈ 𝑈 . The approximations have some important properties [36]:

• (inclusion) aprmin,𝐼
𝑅

(𝐴) ⊆ 𝐴 ⊆ aprmax,𝑇
𝑅

(𝐴).

• (duality) 𝑐𝑜aprmin,𝐼
𝑅

(𝐴) = aprmax,𝑇
𝑅

(𝑐𝑜𝐴), 𝑐𝑜aprmax,𝑇
𝑅

(𝐴) = aprmin,𝐼
𝑅

(𝑐𝑜𝐴) when an IMTL triplet is used.

• (consistency) 𝑅(𝑢, 𝑣) ≤ 𝐼(aprmin,𝐼
𝑅

(𝐴)(𝑣), aprmin,𝐼
𝑅

(𝐴)(𝑢)),

𝑅(𝑢, 𝑣) ≤ 𝐼(aprmax,𝑇
𝑅

(𝐴)(𝑣), aprmax,𝑇
𝑅

(𝐴)(𝑢)).

Given 𝜆 ∈ [0, 1], 𝑇 -preorder 𝑅, 𝑡-norm 𝑇 and 𝑢 ∈𝑈 , a fuzzy granule is defined as a parametric fuzzy set

𝑅+
𝜆
(𝑢) = {(𝑣,𝑇 (𝑅(𝑢, 𝑣), 𝜆);𝑣 ∈𝑈}. (16)

A fuzzy set 𝐴 in 𝑈 is granularly representable w.r.t. 𝑅 and 𝑇 if

𝐴 =
⋃

{𝑅+
𝐴(𝑢)(𝑢);𝑢 ∈𝑈},

where the union of fuzzy sets is defined with the max operator.

Proposition 2.5. [11] It holds that aprmin,𝐼
𝑅

(𝐴) is the largest granularly representable set contained in 𝐴, while apr
max,𝑇
𝑅

(𝐴) is the smallest 
granularly representable set containing 𝐴.

We can observe the connection between consistency and granular representability by the fact that the lower and upper 
approximations possess both properties.

3. Inconsistencies in data - definition and didactic examples

In this section, we provide the formal definition of data inconsistency and illustrate it using two small examples. Let 𝑈 be a set 
of instances, 𝑅̃ a 𝑇 -preorder relation on 𝑈 , and let 𝐴 be a fuzzy set on 𝑈 that describes a certain decision using fuzzy membership 
degrees. We say that a pair 𝑢, 𝑣 ∈𝑈 is consistent if it holds that

𝑇 (𝑅(𝑢, 𝑣),𝐴(𝑣)) ≤𝐴(𝑢), (17)
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or equivalently,
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Table 2

Classification data.

instance att1
(debt)

att2
(salary)

att3
(portfolio)

decision

1 2200 4200 6000 1
2 7200 2600 7600 1
3 3900 3600 8150 0
4 3900 3600 8150 1
5 10400 3900 9100 0
6 8300 2500 4300 0

Table 3

𝑇𝐿-equivalence matrix on classification data.

1 2 3 4 5 6

1 1.000 0.059 0.552 0.552 0.000 0.000
2 0.059 1.000 0.412 0.412 0.235 0.312
3 0.552 0.412 1.000 1.000 0.207 0.198
4 0.552 0.412 1.000 1.000 0.207 0.198
5 0.000 0.235 0.207 0.207 1.000 0.000
6 0.000 0.312 0.198 0.198 0.000 1.000

𝑅(𝑢, 𝑣) ≤ 𝐼(𝐴(𝑣),𝐴(𝑢)).
Both forms are valid due to the residuation property (9). In order to better understand Eq. (17), we first assume that 𝑅̃ and 𝐴 are 
crisp, i.e., they take values from {0, 1}. In this case, 𝑡-norm 𝑇 acts as the usual AND logical operator.

If 𝑅̃ is symmetric (i.e., it is an equivalence or indiscernibility relation), Eq. (17) is interpreted as “If 𝑢 is indiscernible from 𝑣, and 
𝑣 is in 𝐴, then 𝑢 is in 𝐴”. On the other hand, if 𝑅̃ is not symmetric (i.e., it is a preorder or dominance relation), and we assume that 
class 𝐴 is more preferred than its complement 𝐴𝑐 , Eq. (17) is interpreted as “If 𝑢 is at least as good as 𝑣 and 𝑣 is in 𝐴, then 𝑢 is in 𝐴”.

Now assume that both 𝑅̃ and 𝐴 are fuzzy. If 𝑅̃ is a 𝑇 -equivalence i.e., it is symmetric, we interpret it as a similarity relation which 
measures how similar two instances are on the [0, 1] scale, where 1 stands for indiscernibility while 0 means a complete absence of 
similarity. The interpretation of Eq. (17) is “If 𝑢 is similar to 𝑣 and 𝑣 is in 𝐴, then 𝑢 is in 𝐴”. In this case, “𝑢 is in 𝐴” is evaluated by 
means of a membership degree. Analogously, if 𝑅̃ is not symmetric, the 𝑇 -preorder expresses fuzzy dominance. In this case, Eq. (17)
can be read as “If 𝑢 is better than or similar to 𝑣, and 𝑣 is in 𝐴, then 𝑢 is in 𝐴”. Again, the membership to 𝐴 is expressed in a fuzzy 
manner.

Next, we show some examples of these four types of inconsistency (symmetric vs. non-symmetric and crisp vs. fuzzy cases) on 
two datasets; the first involves a binary classification problem, while the second is about regression.

3.1. Binary classification

Consider the binary classification problem in Table 2, with six instances that represent different customers that applied for a loan. 
Each of them is described with three attributes: credit card debt, monthly net salary, and value of their investment portfolio.

The decision attribute expresses if they got the loan (value 1) or not (value 0). We will now identify the four types of inconsistency 
discussed above in the dataset from Table 2.

First, consider the crisp equivalence relation 𝑅̃ determined by equality on the condition attributes. Inconsistency w.r.t. 𝑅̃ can be 
observed for instances 3 and 4: they are identically evaluated on all condition attributes, while their decision label is different. In 
other words, these clients have exactly the same financial parameters, but one client got the loan, while the other one was rejected.

Next, assume 𝑅̃ is the following dominance relation determined by the condition attributes: (𝑢, 𝑣) ∈ 𝑅̃ as soon as 𝑎𝑡𝑡1(𝑢) ≤ 𝑎𝑡𝑡1(𝑣), 
𝑎𝑡𝑡2(𝑢) ≥ 𝑎𝑡𝑡2(𝑣) and 𝑎𝑡𝑡3(𝑢) ≥ 𝑎𝑡𝑡3(𝑣) simultaneously hold (reflecting that 𝑎𝑡𝑡1 is a cost-type attribute while the others are gain-type 
attributes). Instances 2 and 3 are inconsistent w.r.t. this relation: instance 3 is evaluated better than instance 2 on all attributes, but 
the latter is assigned to a better decision (1) than the former (0). Observe that also instances 3 and 4 are in this relation, which shows 
that the indiscernibility relation is a particular case of the considered dominance relation.

Now, we move on to involve fuzzy relations. In Table 3, we calculate pairwise similarities among instances from Table 2 using 
𝑇𝐿-equivalence (14) for 𝛾 = 1. If we are dealing with a classification problem, as is the case here, two instances that are assigned to 
different decision classes are inconsistent as soon as their similarity is bigger than zero, regardless of the choice of the t-norm. For 
example, if 𝑣 is instance 2 and 𝑢 is instance 6, we have that 𝑇𝐿(𝑅(𝑢, 𝑣), 𝐴(𝑣)) = 𝑇𝐿(1, 0.312) = 0£.312 > 0 = 𝐴(𝑢). Therefore, correction 
of inconsistencies is needed.

In Table 4, we calculate the pairwise fuzzy dominance values among instances from Table 2 using 𝑇𝐿-preorder (13) for 𝛾 = 1. 
Using the same pair of instances, we can identify the inconsistency w.r.t. the fuzzy dominance relation.

To see the added value of using fuzzy relations, note that similarity captures more information on the relationship between 
instances than indiscernibility. The similarity relation evaluates how close the instances are, while the indiscernibility only determines 
256

if the instances have identical condition attributes or not.
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Table 4

𝑇𝐿-preorder matrix on classification data.

1 2 3 4 5 6

1 1.000 0.667 0.552 0.552 0.354 1.000
2 0.059 1.000 0.412 0.412 0.235 1.000
3 0.647 1.000 1.000 1.000 0.802 1.000
4 0.647 1.000 1.000 1.000 0.802 1.000
5 0.000 0.610 0.207 0.207 1.000 0.744
6 0.000 0.312 0.198 0.198 0.000 1.000

Table 5

Regression data.

instance att1
distance to transport

att2
size

att3
distance to grocery

decision

1 1200 120 1100 0.770
2 2800 90 900 0.240
3 1900 80 500 0.820
4 2600 60 2200 0.850
5 700 70 3100 0.400
6 3100 50 1400 0.300

Table 6

𝑇𝐿-equivalence matrix on regression data.

1 2 3 4 5 6

1 1.000 0.333 0.429 0.143 0.231 0.000
2 0.333 1.000 0.625 0.500 0.125 0.429
3 0.429 0.625 1.000 0.346 0.000 0.500
4 0.143 0.500 0.346 1.000 0.208 0.692
5 0.231 0.125 0.000 0.208 1.000 0.000
6 0.000 0.429 0.500 0.692 0.000 1.000

When a crisp dominance relation is used, we may face the phenomenon where we have a high number of incomparable instances, 
i.e., pairs of instances where one instance can be better on one attribute, while the other instance is better on a different attribute. 
Examples are instances 2 and 5 in Table 2, where instance 2 is better on attribute 1 than instance 5 (smaller debt) while instance 5 
is better on the two other attributes (higher salary and higher portfolio value). Neither 2 dominates 5 nor 5 dominates 2. A fuzzy 
dominance relation aids to extract additional information in the form of gradual dominance when we face incomparability. In that 
way, fuzzy dominance can relax the strictness of the crisp dominance relation.

3.2. Regression

In the examples derived from the data from Table 2, inconsistencies w.r.t. a fuzzy relation were observed when we deal with 
a crisp decision. In Table 5, we consider a dataset with fuzzy membership values for the decision attribute. This small dataset 
represents 6 apartments described using 3 condition attributes, while the decision attribute evaluates their expensiveness. The 3 
condition attributes are: distance from the nearest public transport station in meters, size of the apartment in square meters, and the 
distance from the nearest grocery store in meters. The decision attribute, expressed with values from interval [0, 1], can be obtained 
using a monotone transformation of the actual prices of the apartments.

Since we are dealing with fuzzy decision labels, it is not possible to consider inconsistencies w.r.t. a crisp relation. Therefore, we 
will identify inconsistencies w.r.t. fuzzy relations. Pairwise evaluations of the 𝑇𝐿-equivalence relation (14) on instances from Table 5
are given in Table 6.

Using the evaluations, if 𝑢 is instance 2 and 𝑣 is instance 3, they are inconsistent since 𝑇𝐿(𝑅(𝑢, 𝑣), 𝐴(𝑣)) = 𝑇 (0.625, 0.820) = 0.445 >
0.240 =𝐴(𝑢).

Pairwise evaluations of the 𝑇 -preorder relation (14) on instances from Table 5 are given in Table 7. Using the same pair of 
instances, we can identify the inconsistency w.r.t. the fuzzy dominance relation.

3.3. Relationship between consistency and granular representability

As already stated before, the methods that are used for inconsistency corrections (rough sets and KS approach) in the crisp case, 
as well as the fuzzy rough sets exhibit granular properties i.e., the resulting set without inconsistencies can be represented as a union 
of smaller meaningful sets called granules. Such properties can be called granular properties.

The following proposition reveals the equivalence between granular representability and consistency for a general 𝑇 -preorder 
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Table 7

𝑇 -preorder matrix on regression data.

1 2 3 4 5 6

1 1.000 0.923 0.769 1.000 0.792 1.000
2 0.333 1.000 0.625 0.917 0.125 1.000
3 0.429 0.857 1.000 1.000 0.500 1.000
4 0.143 0.500 0.346 1.000 0.208 0.692
5 0.231 0.154 0.000 0.654 1.000 0.346
6 0.000 0.429 0.500 0.792 0.000 1.000

Proposition 3.1. A fuzzy set 𝐴 in 𝑈 is granularly representable if and only if it satisfies the object monotonicity property, i.e.,

𝐴 =
⋃

{𝑅+
𝐴(𝑢)(𝑢);𝑢 ∈𝑈}⇔ ∀𝑢, 𝑣 ∈𝑈, 𝑅(𝑣, 𝑢) ≤ 𝐼(𝐴(𝑢),𝐴(𝑣))

⇔ ∀𝑢, 𝑣 ∈𝑈, 𝑇 (𝑅(𝑣, 𝑢)𝐴(𝑢)) ≤𝐴(𝑣)
Proof.

𝐴 =
⋃

{𝑅+
𝐴(𝑢)(𝑢);𝑢 ∈𝑈}⇔ ∀𝑣 ∈𝑈, 𝐴(𝑣) = max(𝑇 (𝑅(𝑣, 𝑢),𝐴(𝑢));𝑢 ∈𝑈 )

⇔ ∀𝑢, 𝑣 ∈𝑈, 𝐴(𝑣) ≥ 𝑇 (𝑅(𝑣, 𝑢),𝐴(𝑢))
⇔ ∀𝑢, 𝑣 ∈𝑈, 𝑅(𝑣, 𝑢) ≤ 𝐼(𝐴(𝑢),𝐴(𝑣)).

The second equivalence holds from the observation that the maximum is reached for 𝑢 = 𝑣 due to reflexivity of 𝑅. The third 
equivalence holds from the residuation property. □

Due to the granular properties of data that are consistent w.r.t. a 𝑇 -preorder, the term “monotonically constrained” can be 
translated into “consistent” or “granularly representable” introduced in [11] when dealing with 𝑇 -preorder relations. We may use 
both terms interchangeably in our work. The following section reflects the consistency condition from a statistical point of view, i.e., 
from the assumption that data, including fuzzy decision attributes, are realizations of a random variable.

4. Statistical approach to inconsistency in data

4.1. Ontic fuzzy sets and probabilistic uncertainty

Before we proceed with the statistical view of the inconsistency in data, we have to distinguish between probabilistic uncertainty 
and fuzziness since both will be used in the development of the approach. Fuzzy sets are often related to uncertainty modeling 
[38–40]. However, we should be very careful when mentioning that fuzzy sets are used to model uncertainty. First, two types of 
classical (crisp) sets have to be distinguished: conjunctive and disjunctive sets [41]. A conjunctive set is a collection of items that 
represents a well-known complex entity, i.e., it is a conjunction of its elements. For example, a time interval that describes a span of 
some activity. On the other hand, a disjunctive set describes incomplete information about an ill-known object. The object of interest 
is contained in the disjunctive set but we do not know which element it is, i.e., the set is a disjunction of its elements. For example, 
an event that occurred at an unknown moment in time is described with a time interval that represents our knowledge about the 
unknown event. Conjunctive sets are also known as ontic sets while disjunctive sets are called epistemic sets. Fuzzy sets are used to 
model gradual information which is not uncertain by itself. Fuzzy sets may be related to uncertainty only if the underlying universe, 
on which a fuzzy set is defined, is a disjunctive set. In that case, fuzzy sets make incomplete knowledge more expressive by allowing 
gradual information. Such fuzzy sets are usually known as epistemic fuzzy sets and form the basis of possibility theory [42]. In this 
article, we always use fuzzy sets defined over a conjunctive universe, i.e., ontic fuzzy sets, while we assume that the uncertainty in 
data is of probabilistic nature and is solely related to the unknown membership degrees. An example of an ontic fuzzy set is a set of 
apartments that are “expensive”, i.e., a fuzzy set whose universe is some set of apartments, and its membership function is a price 
measure of those apartments. The price is an actual economical characteristic. In such settings, no uncertainty or lack of knowledge 
exists about the set of apartments which is a conjunctive set. The uncertainty we assume exists around actual prices of apartments 
or “degrees of expensiveness”, and such uncertainty will be modeled using probability distributions.

4.2. Granularly representable random fuzzy sets

We assume that we observed a finite set of instances 𝑈 from the underlying universe, i.e., 𝑈 is a random sample. 𝑈 is described 
with the condition and decision attributes where the decision attribute takes values in [0,1], which are interpreted as membership 
degrees to an unknown fuzzy set that we want to reconstruct using the observed values. From the perspective of statistical learning 
theory introduced in Section 2.1, condition attributes correspond to random variable  while the decision attribute corresponds to 
random variable  , which now takes values from interval [0, 1]. The fuzzy set that we want to reconstruct contains uncertainties that 
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are represented in a probabilistic way, i.e., we assume that the actual values are altered due to perturbation. Perturbation may be 
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caused by incomplete knowledge about data (missing attributes) or by random effects that occur during data generation. Such altered 
values are represented by a family of random variables {(𝑢), 𝑢 ∈ 𝑈} which model our uncertainty about the ill-known membership 
degrees {𝐴(𝑢), 𝑢 ∈ 𝑈}. In other words, for each instance 𝑢, the ill-known membership degree 𝐴(𝑢) is represented with the random 
variable (𝑢) having codomain [0, 1]. Family {(𝑢), 𝑢 ∈ 𝑈} is a special case of a random fuzzy set defined in [43] (the other name is 
fuzzy random variable). Hence, we may refer to the family as random fuzzy set .

The family {(𝑢), 𝑢 ∈ 𝑈} corresponds to family =𝑥 from Section 2. Therefore, we formulate the reconstruction of fuzzy set 𝐴
as the problem where for a given set of instances 𝑈 and its condition and decision attributes, we want to estimate characteristics 
of (𝑢) (like conditional mean, median and quantiles mentioned above) in order to describe the ill-known 𝐴(𝑢). Knowledge about 
condition attributes is represented using a 𝑇 -preorder relation 𝑅, i.e., for each pair 𝑢, 𝑣 ∈𝑈 we are given the value 𝑅(𝑢, 𝑣). We denote 
the observed decision values as 𝐴̄(𝑢) for 𝑢 ∈𝑈 .

In the first step, we will extend the probabilistic monotonicity constraints (4) for a 𝑇 -preorder relation. In order to relate granular 
representability and the family of random variables {(𝑢), 𝑢 ∈ 𝑈}, we introduce the following definition.

Definition 4.1. Random fuzzy set  is granularly representable (does not possess inconsistencies) if

∀𝑢, 𝑣 ∈𝑈 and∀𝑝 ∈ [0,1], 𝑅(𝑢, 𝑣) ≤ 𝐼(𝐴𝑝(𝑣),𝐴𝑝(𝑢)),
where 𝐴𝑝(𝑢) =𝑄(𝑢)(𝑝), i.e., 𝐴𝑝 is the conditional 𝑝-quantile of .

Definition 4.1 is an extension of the third equivalence in (4). It states that  is granularly representable if all its 𝑝-quantiles 𝐴𝑝
(𝑝 ∈ [0, 1]) are granularly representable as ordinary fuzzy sets.

The next question is, if the random fuzzy set  is granularly representable, is its expected value 𝐸, defined as 𝐸 = {𝐸((𝑢)), 𝑢 ∈
𝑈}, also granularly representable? Before answering this question, we recall the well-known Jensen inequality [44].

Proposition 4.1. Let 𝜇 be a probability measure on the set of reals, 𝑔 a 𝜇-measurable real function, and 𝜙 a real convex function. It holds 
that

∫ 𝜙(𝑔)𝑑𝜇 ≥ 𝜙
(
∫ 𝑔𝑑𝜇

)
.

Since the standard (Lebesgue) measure is equivalent to the probability measure on [0, 1] (measure value of interval [0, 1] is 1), the above 
inequality translates to

1

∫
0

𝜙(𝑔(𝑥))𝑑𝑥 ≥ 𝜙
( 1

∫
0

𝑔(𝑥)𝑑𝑥
)
.

Using Jensen’s inequality, we obtain the following result.

Proposition 4.2. Let 𝑇 be a 𝐷-convex 𝑡-norm and 𝐼 its R-implicator. Then 𝐸 is granularly representable (does not possess inconsistencies) 
as soon as  is.

Proof. For every 𝑢, 𝑣 ∈𝑈 , we need to prove that

𝑇 (𝑅(𝑢, 𝑣),𝐸(𝑣)) ≤𝐸(𝑢).

Using (1), we have that ∀𝑢 ∈𝑈, 𝐸(𝑢) = ∫ 1
0 𝐴𝑝(𝑢)𝑑𝑝. It follows that

𝑇 (𝑅(𝑢, 𝑣),𝐸(𝑣)) = 𝑇
⎛⎜⎜⎝𝑅(𝑢, 𝑣),

1

∫
0

𝐴𝑝(𝑣)𝑑𝑝
⎞⎟⎟⎠

≤
1

∫
0

𝑇 (𝑅(𝑢, 𝑣),𝐴𝑝(𝑣))𝑑𝑝

≤
1

∫
0

𝐴𝑝(𝑢)𝑑𝑝 =𝐸(𝑢).

The first inequality follows from the fact that 𝑇 (𝑐, ⋅) is a convex function for a constant 𝑐 and Jensen’s inequality. The second 
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inequality follows from the granularity of 𝐴𝑝 . □
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5. Calculation of granular approximations

In this section, we discuss which properties of  can be estimated and how to do this in practice. In general, the observed fuzzy 
set 𝐴̄ is not granularly representable due to the presence of inconsistency, so our goal is to find a granularly representable set that is 
close to it by minimizing a certain loss function. For a given loss function 𝐿, the general form of the optimization problem expressing 
our goal is

minimize
∑
𝑢∈𝑈
𝐿(𝐴̄(𝑢), 𝐴̂(𝑢))

subject to 𝑇 (𝑅(𝑢, 𝑣), 𝐴̂(𝑣)) ≤ 𝐴̂(𝑢), 𝑢, 𝑣 ∈𝑈
0 ≤ 𝐴̂(𝑢) ≤ 1, 𝑢 ∈𝑈,

(18)

where {𝐴̂(𝑢), 𝑢 ∈ 𝑈} is the unknown granularly representable set. We will call the result of optimization problem (18) the granular 
approximation of fuzzy set {𝐴̄(𝑢), 𝑢 ∈𝑈}.

Optimization problem (18) is the main contribution of the article. It allows us to remove inconsistencies (obtain a granularly 
representable set) with the least cost of alteration of values (w.r.t. loss function 𝐿). The remainder of the section investigates specific 
cases for which problem (18) can be efficiently solved.

Under the assumption that  is granularly representable, it is desirable to use loss functions for which the Bayes predictor is 
granularly representable as well.

Definition 5.1. We say that a loss function 𝐿 is granular with respect to a left-continuous 𝑡-norm 𝑇 and 𝑇 -preorder 𝑅 if its Bayes 
predictor is granularly representable under the assumption that the underlying family of random variables {(𝑢), 𝑢 ∈𝑈} is granularly 
representable w.r.t. 𝑇 and 𝑅.

Note that with this definition, the 𝑝-quantile loss function (5) is granular, since its Bayes predictor is the quantile fuzzy set 𝐴𝑝, 
which is granularly representable by the definition. The squared error loss (2) is granular for D-convex 𝑡-norms since the Bayes 
predictor 𝐸 is granularly representable in this case by Proposition 4.2. Hence, both loss functions introduced in Subsection 2.1 are 
suitable for the calculation of granular approximations.

In problem (18), both objective function and constraints are not necessarily linear and may take different forms that depend on 
loss function 𝐿 and on the type of fuzzy logic connectives used. However, in the case of the loss functions (5) and (2), and continuous 
Archimedean 𝑡-norms, the optimization problem can be efficiently solved.

Indeed, consider 𝑡-norms 𝑇𝐿,𝜑 and 𝑇𝑃 ,𝜑 introduced in Eq. (7) and (8). If 𝑇𝐿,𝜑 is used in (18), then the set of constraints that express 
granular representability can be simplified in the following way: for all 𝑢, 𝑣 ∈ 𝑈 ,

𝑅(𝑣, 𝑢) ≤ 𝐼𝐿,𝜑(𝐴(𝑢),𝐴(𝑣))
⇔ 𝑇𝐿,𝜑

(
𝑅(𝑣, 𝑢),𝐴(𝑢)

) ≤𝐴(𝑣)
⇔ 𝜑−1(max(𝜑(𝑅(𝑢, 𝑣)) +𝜑(𝐴̂(𝑣)) − 1,0) ≤ 𝐴̂(𝑢)
⇔max(𝜑(𝑅(𝑢, 𝑣)) +𝜑(𝐴̂(𝑣)) − 1,0) ≤ 𝜑(𝐴̂(𝑢))
⇔max(𝑅𝜑(𝑢, 𝑣) + 𝛼𝑣 − 1,0) ≤ 𝛼𝑢
⇔𝑅𝜑(𝑢, 𝑣) ≤ 𝛼𝑢 − 𝛼𝑣 + 1

where we introduced the shorthands 𝑅𝜑(𝑢, 𝑣) = 𝜑(𝑅(𝑢, 𝑣)), 𝛼𝑢 = 𝜑(𝐴̂(𝑢)) and 𝛼𝑣 = 𝜑(𝐴̂(𝑣)). The last equivalence holds because 0 is 
always smaller than 𝛼𝑢, hence the max operator can be lifted.

If 𝑇𝑃 ,𝜑 is used then in an analogous way we find

𝜑−1(𝜑(𝑅(𝑢, 𝑣))𝜑(𝐴̂(𝑣))) ≤ 𝐴̂(𝑢)⇔ 𝛼𝑣𝑅𝜑(𝑢, 𝑣) ≤ 𝛼𝑢
for all 𝑢, 𝑣 ∈𝑈 .

The border constraints now become 0 ≤ 𝛼𝑢 ≤ 1 for all 𝑢 ∈𝑈 . We can conclude that using continuous Archimedean 𝑡-norms leads to 
linear optimization constraints. This is a promising result since many optimization solvers are very efficient with linear constraints.

In both cases, the empirical risk can be expressed as∑
𝑢∈𝑈
𝐿(𝐴̄(𝑢), 𝜑−1(𝛼𝑢)).

In the empirical risk above, the non-linear term 𝜑−1(𝛼𝑢) appears. Function 𝜑−1 is an arbitrary bijection that can lead to a non-convex 
optimization problem. However, Proposition 2.2 states that a different scaling of values does not change the Bayes predictor delivered 
by the 𝑝-quantile loss function. To eliminate the non-linearity, we can apply 𝜑 to both parameters of the loss function and replace 
𝐿𝑝(𝐴̄(𝑢), 𝜑−1(𝛼𝑢)) by 𝐿𝑝(𝜑(𝐴̄(𝑢)), 𝛼𝑢). Although the value of the estimand (the quantity that is estimated, i.e., the Bayes predictor 𝐴𝑝) 
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remains unchanged with the new loss function, the estimator (the result of the optimization 𝐴̂𝑝) can be different. From the theory 
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of quantile regression, we can express the optimization of the quantile risk as a linear program [45]. We introduce new variables 
𝑥𝑢, 𝑢 ∈ 𝑈 and 𝑦𝑢, 𝑢 ∈ 𝑈 such that 𝑥𝑢 = max(𝜑(𝐴̄(𝑢) − 𝛼𝑢), 0), 𝑦𝑢 = max(𝛼𝑢 − 𝜑(𝐴̄(𝑢)), 0), as well as the shorthand 𝐴̄𝜑(𝑢) = 𝜑(𝐴̄(𝑢)). In case 
𝑇𝐿,𝜑 is used, we can reformulate optimization problem (18) as

minimize 𝑝
∑
𝑢∈𝑈
𝑥𝑢 + (1 − 𝑝)

∑
𝑢∈𝑈
𝑦𝑢,

subject to 𝛼𝑢 − 𝛼𝑣 + 1 ≥𝑅𝜑(𝑢, 𝑣), 𝑢, 𝑣 ∈𝑈

𝑥𝑢 − 𝑦𝑢 = 𝐴̄𝜑(𝑢) − 𝛼𝑢, 𝑢 ∈𝑈

0 ≤ 𝛼𝑢 ≤ 1, 𝑥𝑢 ≥ 0, 𝑦𝑢 ≥ 0. 𝑢 ∈𝑈

(19)

In case of 𝑇𝑃 ,𝜑, optimization problem (18) obtains the form

minimize 𝑝
∑
𝑢∈𝑈
𝑥𝑢 + (1 − 𝑝)

∑
𝑢∈𝑈
𝑦𝑢,

subject to 𝛼𝑣𝑅𝜑(𝑢, 𝑣) ≤ 𝛼𝑢, 𝑢, 𝑣 ∈𝑈

𝑥𝑢 − 𝑦𝑢 = 𝐴̄𝜑(𝑢) − 𝛼𝑢, 𝑢 ∈𝑈

0 ≤ 𝛼𝑢 ≤ 1, 𝑥𝑢 ≥ 0, 𝑦𝑢 ≥ 0. 𝑢 ∈𝑈

(20)

Summarizing, for quantile risk and a continuous Archimedean 𝑡-norm, the optimization problem (18) can be expressed as a linear 
program and, therefore, efficiently solved using one of many existing efficient linear programming solvers. We have the following 
technical result.

Proposition 5.1. Constraints 0 ≤ 𝛼𝑢 ≤ 1, 𝑢 ∈𝑈 in (19) and (20), are redundant.

Proof. Assume that the constraints are removed and that an optimal solution 𝛼∗𝑢 , 𝑢 ∈ 𝑈 , has values smaller than 0 or larger than 1. 
We construct another solution from 𝛼∗𝑢 , 𝑢 ∈ 𝑈 , by replacing values larger than 1 by 1, and values smaller than 0 by 0. It is easy to 
check that the new solution satisfies the consistency constraints. From the constraints 𝑥𝑢 − 𝑦𝑢 = 𝐴̄𝜑(𝑢) − 𝛼𝑢, 𝑢 ∈ 𝑈 , it is easy to see 
that when 𝛼𝑢 ≥ 1 then 𝐴̄𝜑(𝑢) − 𝛼𝑢 ≤ 0, which leads to 𝑥𝑢 = 0 and 𝑦𝑢 = 𝛼𝑢 − 𝐴̄𝜑(𝑢), and when 𝛼𝑢 ≤ 0 then 𝐴̄𝜑(𝑢) − 𝛼𝑢 ≥ 0, which leads 
to 𝑥𝑢 = 𝐴̄𝜑(𝑢) − 𝛼𝑢 and 𝑦𝑢 = 0. Hence, after replacing values larger than 1 by 1, the values of 𝑦𝑢 will be reduced and after replacing 
values smaller than 0 by 0, the values of 𝑥𝑢 will also be reduced. In both cases, the value of the objective function will be reduced. 
Therefore, we constructed a feasible solution with a smaller cost which contradicts the optimality of 𝛼∗𝑢 , 𝑢 ∈𝑈 . □

A solution of linear problems (19) and (20) is not necessarily unique as a consequence of linearity of both objective function and 
constraints. However, if for some probability parameter 𝑝 we have infinitely many solutions, the lower and upper bounds of a such 
family of solutions can be calculated by running the linear programs with parameters 𝑝 − 𝜖 and 𝑝 + 𝜖, respectively, for sufficiently 
small 𝜖.

If the squared error loss is used as a loss function, it is obvious that the objective function will become non-linear. Also, 
Proposition 2.2 does not hold anymore and using 𝐿𝑝(𝐴̄𝜑(𝑢), 𝛼𝑢) instead of 𝐿𝑝(𝐴̄(𝑢), 𝜑−1(𝛼𝑢)) will lead to the estimation of a different 
Bayes predictor. However, we will include this approach in our analysis since it may give good results in practical applications. In 
this case, the optimization problem for the 𝑡-norm 𝑇𝐿,𝜑 is

minimize
∑
𝑢∈𝑈

(𝛼𝑢 − 𝐴̄𝜑(𝑢))2,

subject to 𝛼𝑢 − 𝛼𝑣 + 1 ≥𝑅𝜑(𝑢, 𝑣), 𝑢, 𝑣 ∈𝑈
0 ≤ 𝛼𝑢 ≤ 1, 𝑢 ∈𝑈

(21)

while for 𝑇𝑃 ,𝜑 the corresponding problem is

minimize
∑
𝑢∈𝑈

(𝛼𝑢 − 𝐴̄𝜑(𝑢))2,

subject to 𝛼𝑣𝑅𝜑(𝑢, 𝑣) ≤ 𝛼𝑢, 𝑢, 𝑣 ∈𝑈
0 ≤ 𝛼𝑢 ≤ 1. 𝑢 ∈𝑈

(22)

Using a similar argument as in Proposition 5.1, we may drop the constraints 0 ≤ 𝛼𝑢 ≤ 1, 𝑢 ∈𝑈 .
To solve the proposed linear and quadratic programs, we have two approaches: geometrical or combinatorial. The combinatorial 

approach for the linear programs is discussed in the appendix of this paper. Namely, the dual versions of problems (19) and (20) can 
be modeled as the min-cost flow problem and its variations. We recall the min-cost flow problem and some algorithms used to solve 
it in Appendix A while we show how to model dual problems of (19) and (20) as the min-cost flow problem and a variation of the 
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min-cost flow problem, respectively, in Appendix B. In the same section, we provide a greedy algorithm to solve the aforementioned 
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Table 8

Granular approximations in the classification case for the 𝑝-quantile loss 
and 𝑇 -equivalence relation.

𝑝 vs.
instance

1 2 3 4 5 6

0.000 0.448 0.588 0.000 0.000 0.000 0.000
0.250 0.448 0.588 0.000 0.000 0.000 0.000
0.500 1.000 0.687 0.552 0.552 0.000 0.000
0.750 1.000 1.000 1.000 1.000 0.235 0.313
1.000 1.000 1.000 1.000 1.000 0.235 0.313

Table 9

Granular approximations in the classification case for the 𝑝-quantile loss 
and 𝑇 -preorder relation.

𝑝 vs.
instance

1 2 3 4 5 6

0.000 0.353 0.000 0.000 0.000 0.000 0.000
0.250 0.743 0.390 0.390 0.390 0.000 0.000
0.500 1.000 0.390 0.793 0.793 0.000 0.000
0.750 1.000 1.000 1.000 1.000 0.610 0.313
1.000 1.000 1.000 1.000 1.000 0.610 0.313

Table 10

Granular approximations in the classification case for the squared error 
loss and 𝑇 -equivalence relation.

instance 1 2 3 4 5 6

degree 0.965 0.817 0.517 0.517 0.053 0.130

Table 11

Granular approximations in the classification case for the squared error loss 
and 𝑇 -preorder relation.

instance 1 2 3 4 5 6

degree 0.960 0.607 0.607 0.607 0.217 0.000078

variation based on the algorithm that solves the original min-cost flow problem. Since the algorithm is new, we provide its proof of 
correctness in Appendix C. The combinatorial approach or duality of the quadratic programs was not discussed.

The geometrical approach includes the aforementioned simplex methods. They are based on geometrical structures that are 
created in space by constraints and the objective function. There are many softwares that are able to solve linear and quadratic 
programs like Gurobi [46] and Mosek [47]. We need to bear in mind that the proposed optimization problems have 𝑂(|𝑈 |) variables 
and 𝑂(|𝑈 |2) constraints which lead to the constraint matrix with 𝑂(|𝑈 |3) entries. For a large sample size, dealing with such a matrix 
can be computationally demanding. However, the matrix is sparse (a vast majority of entries are 0) and our internal experiments 
showed that the Mosek solver can be used as an efficient option to deal with this sparse constraint matrix.

Example 5.1. This example continues with the data introduced in Section 3. We want to calculate granular approximations using 
optimization procedures (19) and (21) that are developed for the Łukasiewicz 𝑡-norm 𝑇𝐿.

First, we calculate the granular approximation of the classification dataset from Table 2 using 𝑇𝐿-equivalence relation (14) and 
quantile loss 𝐿𝑝. The relation matrix from Table 3 is passed together with the decision attribute to the optimization problem (19)
with probability parameters 𝑝 ∈ {0, 0.25, 0.5, 0.75, 1}. The obtained granular approximations are given in Table 8.

In Table 9, we present the calculated granular approximations using 𝑇𝐿-preorder relation (13) while the remaining parameters 
are the same as in Table 8.

The interpretation of both tables is analogous. In every row, we have a granular approximation for a corresponding probability 
parameter from the first column. Every entry is a fuzzy membership degree for the corresponding instance which may be interpreted 
as the degree up to which the instance belongs to class with label 1. Since that fuzzy value is unknown, we have its distribution 
characterized with quantiles. For example, in the second row of Table 8, we say that with probability 0.25, the degree up to which 
instance 3 belongs to the class with label 1 is not greater than 0.588, while in the case of Table 9, the degree is not greater than 
0.390.

The granular approximations obtained using optimization problem (21) and 𝑇𝐿-equivalence relation (14) are shown in Table 10, 
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while the output of the same optimization procedure using 𝑇𝐿-preorder relation (13) is provided in Table 11.
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Table 12

Granular approximations in the regression case for the 𝑝-quantile loss and 
𝑇 -equivalence relation.

𝑝 vs.
instance

1 2 3 4 5 6

0.000 0.770 0.240 0.615 0.608 0.400 0.300
0.250 0.770 0.240 0.615 0.608 0.400 0.300
0.500 0.770 0.425 0.800 0.608 0.400 0.300
0.750 0.770 0.445 0.820 0.850 0.400 0.542
1.000 0.770 0.445 0.820 0.850 0.400 0.542

Table 13

Granular approximations in the regression case for the 𝑝-quantile loss and 
𝑇 -preorder relation.

𝑝 vs.
instance

1 2 3 4 5 6

0.000 0.770 0.240 0.615 0.323 0.400 0.240
0.250 0.770 0.300 0.675 0.383 0.400 0.300
0.500 0.770 0.425 0.800 0.508 0.400 0.300
0.750 0.770 0.663 0.820 0.746 0.400 0.538
1.000 0.850 0.767 0.850 0.850 0.504 0.642

Table 14

Granular approximations in the classification case for the squared error 
loss and 𝑇 -equivalence relation.

instance 1 2 3 4 5 6

degree 0.770 0.343 0.718 0.729 0.400 0.421

Table 15

Granular approximations in the classification case for the squared error 
loss and 𝑇 -preorder relation.

instance 1 2 3 4 5 6

degree 0.770 0.477 0.820 0.560 0.400 0.352

In this case, we may say that the expected degree to which instance 3 belongs to the class with label 1 is equal to 0.517 in the 
case of the 𝑇𝐿-equivalence, and it is equal to 0.607 in the case of the 𝑇𝐿-preorder.

We note that the pairs of instances are now indeed consistent. Following the example from Section 3, where we identified that 
instances 𝑢 ≡ 6 and 𝑣 ≡ 2 were inconsistent, using results from Table 10, we obtain 𝑇𝐿(𝑅(𝑢, 𝑣)𝐴̂(𝑣)) = 𝑇𝐿(0.312, 0.817) = 0.129 ≤ 0.13 =
𝐴̂(𝑢), i.e., they are now consistent. If we use the results from Table 11, we have that 𝑇𝐿(0.312, 0.607) = 0 ≤ 0.000078 = 𝐴̂(𝑢), i.e., they 
are consistent. The values of the fuzzy relations in these examples are obtained from Tables 3 and 4.

We perform the same calculations for the regression data from Section 3 provided in Table 5. In order to compute the granular 
approximations w.r.t. quantile loss and 𝑇𝐿-equivalence relation (14), we pass the relation values from Table 6 and the decision 
attribute from Table 5 to optimization procedure (19) with probability parameters 𝑝 ∈ {0, 0.25, 0.5, 0.75, 1}. The obtained granular 
approximations are given in Table 12.

In Table 13 we calculate the granular approximations using 𝑇𝐿-preorder relation (13) while the other parameters are the same as 
in Table 12.

The obtained fuzzy values are estimations of quantiles of the expensiveness, under the assumption that it is a random fuzzy set 
and that its realizations are given in Table 5. We interpret the values in a way that, for example, in the third row of Table 12 we 
say that the expensiveness of instance 2 is less than 0.24 with probability 0.25, or in the fourth row of the table, we say that the 
expensiveness of instance 4 is less than 0.85 with probability 0.75. In the case of Table 13 we say that the expensiveness of instance 
2 is less than 0.3 with probability 0.25, or in the fourth row of the table, we say that the expensiveness of instance 4 is less than 
0.746 with probability 0.75.

The results for the squared error loss used in optimization procedure (21) are shown in Tables 14 and 15 for 𝑇𝐿-equivalence (14)
and 𝑇𝐿-preorder (13).

In the case of Table 14, we say that the expected expensiveness of instance 4 is equal to 0.729, while in the case of Table 15 the 
expected expensiveness of instance 4 is equal to 0.56.

We again continue the example from Section 3 where we identified that instances 𝑢 ≡ 2 and 𝑣 ≡ 3 are inconsistent. Using estimated 
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values from Table 14 we have that 𝑇 (𝑅(𝑢, 𝑣)𝐴̂(𝑣)) = 𝑇 (0.625, 0.718) = 0.343 ≤ 0.343 = 𝐴̂(𝑢), i.e., they are now consistent. Also, using 
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estimated values from Table 15 we have that 𝑇 (𝑅(𝑢, 𝑣)𝐴̂(𝑣)) = 𝑇 (0.625, 0.82) = 0.445 ≤ 0.477 = 𝐴̂(𝑢), i.e., they are also consistent in this 
case.

Throughout this example, we note that all the estimations and results we obtained depend on the fuzzy relation that is used, i.e., 
whether it is a similarity or a fuzzy dominance relation. The choice of such relation will depend on the meaning of the particular 
dataset and the decision by the creator of the model whether similarity or fuzzy dominance (or some other fuzzy relation) is more 
appropriate to describe the relationship between instances.

6. Properties

In this section, we prove some properties of the granular approximations obtained in Section 5. The first two propositions show 
that the proposed approach is indeed a generalization of both the KS approach [12] for the binary classification case, and of the 
standard fuzzy rough set approximations.

Proposition 6.1. If 𝑅 and 𝐴̄ are crisp, then Problem (18) is reduced to Problem (6) for 𝐾 = 2.

Proof. If 𝐴̄ is crisp, it is obvious that the objective function from (18) corresponds to the objective function from (6) for 𝐾 = 2, 
where the labels with value 1 are those that are more preferred. Regarding the constraints, we examine the consistency conditions 
in the form 𝑅(𝑢, 𝑣) ≤ 𝐼(𝐴̂(𝑣), 𝐴̂(𝑢)). If 𝑅(𝑢, 𝑣) = 0, then there are no restrictions on the implication, i.e., we do not have a constraint. If 
𝑅(𝑢, 𝑣) = 1 then 𝐴̂(𝑣) ≤ 𝐴̂(𝑢) from the ordering property of 𝐼 (10). Since 𝑅(𝑢, 𝑣) = 1 means that 𝑢 ⪰ 𝑣 (𝑢 dominates 𝑣) then the condition 
𝑅(𝑢, 𝑣) = 1 ⇒ 𝐴̂(𝑢) ≥ 𝐴̂(𝑣) is equivalent to 𝑢 ⪰ 𝑣 ⇒ 𝐴̂(𝑢) ≥ 𝐴̂(𝑣) which is exactly the condition from (6). □

Proposition 6.2. The respective lower fuzzy rough approximations are solutions of the optimization problems (19) and (20) for probability 
parameter 𝑝 = 0, while the respective upper fuzzy rough approximations are solutions of the same problems for probability parameter 𝑝 = 1.

Proof. When optimization problems (19) and (20) are considered in terms of 𝛼 and not in terms of 𝐴̂, they can be seen as problem 
(18) with 𝑡-norm 𝑇𝐿 or 𝑇𝑃 , relation 𝑅𝜑 and observations 𝐴̄𝜑. If 𝑝 = 1, then the loss function for 𝑢 ∈ 𝑈 is equal to 0 if 𝛼𝑢 − 𝐴̄𝜑(𝑢) ≥ 0
and to a positive value otherwise. If for all 𝑢 ∈𝑈 it holds that 𝛼𝑢 ≥ 𝐴̄𝜑(𝑢), then the objective is 0, and hence any such 𝛼 is a solution. 
Such fuzzy set 𝛼 contains fuzzy set 𝐴̄𝜑 and is granularly representable w.r.t. 𝑡-norm 𝑇𝐿 or 𝑇𝑃 and relation 𝑅𝜑. From Proposition 2.5, 
the smallest such 𝛼 is the fuzzy rough upper approximation, i.e., the smallest solution is

𝛼∗𝑢 =max
𝑣∈𝑈
𝑇𝐿(𝑅𝜑(𝑣, 𝑢), 𝐴̄𝜑(𝑣)),

or with 𝑇𝑃 instead of 𝑇𝐿. Then, the final solution 𝐴̂∗ is obtained

𝐴̂∗(𝑢) = 𝜑−1(𝛼∗𝑢 )

= 𝜑−1(max
𝑣∈𝑈
𝑇𝐿(𝑅𝜑(𝑣, 𝑢), 𝐴̄𝜑(𝑣)))

= max
𝑣∈𝑈
𝜑−1(𝑇𝐿(𝜑(𝑅(𝑣, 𝑢)), 𝜑(𝐴̄(𝑣))))

= max
𝑣∈𝑈
𝑇𝐿,𝜑(𝑅(𝑣, 𝑢), 𝐴̄(𝑣)) = apr

max,𝑇𝐿,𝜑
𝑅

(𝐴)(𝑢).

The derivation for 𝑇𝑃 is the same.
The proof for the lower approximation is analogous. □

We examine Proposition 6.2 from the perspective of knowledge representation. The lower and upper fuzzy rough approximations 
are seen as sets of necessary and possible knowledge respectively. In other words, the actual ill-known knowledge must contain the 
lower approximation and be contained in the upper one. In probabilistic terms, the probability that the actual knowledge is between 
these approximations is 1 [48]. Hence, the lower and upper approximations are the extreme values in the probability distributions 
of the actual knowledge. It means that the lower approximation is the 0-quantile while the upper approximation is the 1-quantile.

The inconsistency correction performed by rough set approximations can be considered extreme since the resulting approximations 
are either a subset (lower approximation) or a superset (upper approximation) of the original (fuzzy) set. It is thus an interesting 
question if a family of approximations that lie in between lower and upper approximations can be constructed in a way that there 
exists a monotonic ordering of them. The ordering is motivated by the fact that the lower approximation is always a subset of the 
upper one. The following proposition answers this question.

Proposition 6.3. For granular approximations obtained with the 𝑝-quantile loss, the monotonicity property holds. More precisely, let 𝑝 and 
𝑞 be two real numbers from the unit interval and let 𝐴̂𝑝 and 𝐴̂𝑞 be the outputs of the optimization problem (19) or (20) with 𝑝 and 𝑞 as 
probability parameters. It holds that
264

𝑝 ≤ 𝑞⇒ ∀𝑢 ∈𝑈, 𝐴̂𝑝(𝑢) ≤ 𝐴̂𝑞(𝑢).
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Proof. The proof is provided in Appendix D. It relies on the greedy combinatorial approach presented in the previous sections of the 
Appendix, hence those previous sections are necessary for the understanding of the proof. □

In Proposition 6.3, we first notice that when 𝑝 = 0, we have the rough lower approximation, and when 𝑝 = 1, we have the rough 
upper approximation, according to Proposition 6.2. If 0 < 𝑝 < 1, we can obtain different approximations that lie between the lower 
and the upper one and which are ordered w.r.t. inclusion.

For the fuzzy rough approximations that are obtained with IMTL operators, we have the well-known duality property as stated in 
Section 2.3. The following lemma and proposition extend that property to granularly representable sets and granular approximations. 
The duality property is particularly important for binary classification problems. It ensures that granular approximations of two 
different decision classes are complementary w.r.t. a given fuzzy negation 𝑁 .

Lemma 6.1. If fuzzy set 𝐴 is granularly representable w.r.t. 𝑇 -preorder relation 𝑅, then 𝑐𝑜𝐴 is granularly representable w.r.t. 𝑅−1.

Proof. For 𝐴 being granularly representable, we have

𝑇 (𝑅(𝑢, 𝑣),𝐴(𝑣)) ≤𝐴(𝑢).
Applying negation 𝑁 on both sides of the inequality, we have

𝑇 (𝑅(𝑢, 𝑣),𝐴(𝑣)) ≤𝐴(𝑢)⇒𝑁(𝑇 (𝑅(𝑢, 𝑣),𝐴(𝑣))) ≥𝑁(𝐴(𝑢))
⇔ 𝐼(𝑅(𝑢, 𝑣), 𝑐𝑜𝐴(𝑣)) ≥ 𝑐𝑜𝐴(𝑢)
⇔ 𝑇 (𝑐𝑜𝐴(𝑢),𝑅(𝑢, 𝑣)) ≤ 𝑐𝑜𝐴(𝑣)
⇔ 𝑇 (𝑅−1(𝑣, 𝑢), 𝑐𝑜𝐴(𝑢)) ≤ 𝑐𝑜𝐴(𝑣).

The first equivalence follows from Proposition (2.4) while the second is the residuation property. □

In the proof of Lemma 6.1, the implication becomes an equivalence if we use IMTL triplets as operators.

Proposition 6.4. Let 𝛼𝑢, 𝑢 ∈ 𝑈 be a minimizer of the optimization problem (18) with nilpotent 𝑡-norm 𝑇𝐿,𝜑, relation 𝑅, observations 𝐴̄ and 
risk ∑𝑢∈𝑈 𝐿𝑝(𝜑(𝐴̄(𝑢)), 𝛼𝑢) (for short 𝐿𝑝 problem). Then 1 − 𝛼𝑢, 𝑢 ∈𝑈 , is a minimizer of the optimization problem (18) with the same 𝑡-norm, 
relation 𝑅−1, observations 𝐴̄ and risk ∑𝑢∈𝑈 𝐿1−𝑝(𝜑(𝑐𝑜𝐴̄(𝑢)), 𝛼𝑢) (for short 𝐿1−𝑝 problem).

Proof. Solution 𝛼𝑢, 𝑢 ∈𝑈 , is a feasible solution of the 𝐿𝑝 problem, i.e., it satisfies consistency conditions w.r.t. relation 𝑅

𝛼𝑢 − 𝛼𝑣 + 1 ≥ 𝜑(𝑅(𝑢, 𝑣)).
The expression above is equivalent to

(1 − 𝛼𝑣) − (1 − 𝛼𝑢) + 1 ≥ 𝜑(𝑅−1(𝑣, 𝑢)),
which states that 1 − 𝛼𝑢, 𝑢 ∈ 𝑈 , satisfies the consistency conditions w.r.t. relation 𝑅−1 and, therefore, it is a feasible solution of the 
𝐿1−𝑝 problem. We observe that 𝜑(𝑐𝑜𝐴̄(𝑢)) = 𝜑(𝜑−1(1 −𝜑(𝐴̄(𝑢)))) = 1 −𝜑(𝐴̄(𝑢)). Regarding the empirical risk, we have that

𝐿𝑝(𝜑(𝐴̄(𝑢)), 𝛼𝑢) =

{
𝑝|𝜑(𝐴̄(𝑢)) − 𝛼𝑢| if 𝜑(𝐴̄(𝑢)) − 𝛼𝑢 ≥ 0,
(1 − 𝑝)|𝜑(𝐴̄(𝑢)) − 𝛼𝑢| if 𝛼𝑢 −𝜑(𝐴̄(𝑢)) ≥ 0,

=

{
𝑝|(1 − 𝛼𝑢) − (1 −𝜑(𝐴̄(𝑢)))| if (1 − 𝛼𝑢) − (1 −𝜑(𝐴̄(𝑢))) ≥ 0,
(1 − 𝑝)|(1 − 𝛼𝑢) − (1 −𝜑(𝐴̄(𝑢)))| if (1 −𝜑(𝐴̄(𝑢))) − (1 − 𝛼𝑢) ≥ 0,

=

{
(1 − 𝑝)|𝜑(𝑐𝑜𝐴̄(𝑢))) − (1 − 𝛼𝑢)| if 𝜑(𝑐𝑜𝐴̄(𝑢)) − (1 − 𝛼𝑢) ≥ 0,
𝑝|𝜑(𝑐𝑜𝐴̄(𝑢)) − (1 − 𝛼𝑢)| if (1 − 𝛼𝑢) −𝜑(𝑐𝑜𝐴̄(𝑢)) ≥ 0,

=𝐿1−𝑝(𝜑(𝑐𝑜𝐴̄(𝑢)),1 − 𝛼𝑢).

Due to previous equality, we have that non-optimal solution of the 𝐿𝑝 problem different than 𝛼𝑢, 𝑢 ∈𝑈 , will lead to the higher value 
of 𝐿1−𝑝 loss. This means that 1 − 𝛼𝑢, 𝑢 ∈𝑈 , as a feasible solution, is indeed an optimal solution. □

Since the optimal fuzzy set 𝐴̂ of the 𝐿𝑝 problem is calculated as 𝐴̂(𝑢) = 𝜑−1(𝛼𝑢), then the optimal fuzzy set of the 𝐿1−𝑝 is 𝜑−1(1 −
𝛼𝑢) = 𝜑−1(1 −𝜑(𝐴̂(𝑢))) =𝑁(𝐴̂(𝑢)) = 𝑐𝑜𝐴̂(𝑢), i.e., we have the duality.

The duality also holds for the mean squared error risk. The proof is very similar to the proof of Proposition 6.4 where the only 
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difference is that the loss function stays the same in the dual problems.
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7. Conclusion and future work

In this paper, we introduced a novel statistical learning approach for handling inconsistencies in classification and regression 
problems with respect to a fuzzy relation. Our work was motivated by the method introduced by Kotłowski and Słowiński [12] for 
handling monotone inconsistency and we showed that the novel approach is a generalization of the same method in the binary 
classification case. Using fuzzy relations, the novel method is able to handle gradual relationships among instances while the KS 
approach can distinguish only two cases: either instances relate or not.

The novel approach produces a granular approximation of a fuzzy set. The approximation is granularly representable (without 
inconsistencies) and its difference from the original fuzzy set is minimal (w.r.t. a given loss function). It can be seen as a fuzzy 
counterpart of the monotone approximation produced by the KS approach. As in the work of Kotłowski and Słowiński, we provided 
statistical foundations of the granular approximations. In the next step, we formulated optimization problems in order to calculate the 
approximations and we showed their important properties. We also presented two didactic examples; one for a binary classification 
problem and another one for a regression problem. In the didactic examples, we showed how fuzzy relations are used to model 
relationships among numerical data, how the granular approximations are calculated, and how to interpret them in the two cases for 
different loss functions.

We wish to stress that our contribution is in the theoretical development of granular approximations that can be applied in 
many different tasks of machine learning, motivated by the applications of the rough sets. Therefore, any experimental evaluation 
of the granular approximations will depend on the chosen application and the associated data. As was already mentioned in the 
introduction, the possible applications are in fuzzy rough set-based methods and fuzzy rule induction, so our future work will mainly 
go in this direction.
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Appendix A. Minimum-cost flow problem

This section is based on the monograph [49], especially on its 9th chapter.
A flow network is defined as a directed graph where a real value called imbalance is assigned to each node. Imbalances split nodes 

into two subsets: supply nodes with a positive imbalance (supply value) and demand nodes with a negative imbalance (demand 
value). Moreover, each edge is characterized by a positive real capacity and a cost value. We also assign flow amounts to each edge 
which satisfies the condition that they are at most as large as capacities. More formally, let 𝐺 be a finite set of nodes, 𝐸 ⊆𝐺 ×𝐺 the 
finite set of edges, while 𝐹 = (𝐺, 𝐸) is the flow network. We denote imbalances with 𝑏𝑖 for 𝑖 ∈ 𝐺, capacities with 𝑙𝑖,𝑗 , costs with 𝑐𝑖,𝑗
and flow with 𝑧𝑖,𝑗 for (𝑖, 𝑗) ∈𝐸.

The minimum-cost flow problem is an optimization problem defined on a flow network where we want to transport flow from 
the supply nodes to the demand nodes, such that

– the difference between the flow that leaves a node and the flow that enters the node is equal to the imbalance of this node,
– a flow in a particular edge is at most as large as the capacity of that edge, and
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– the total cost of the flow transportation is minimal.
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Algorithm 1 Successive Shortest Paths.
1: Input: Flow network 𝐹 = (𝐺, 𝐸).
2: Output: Flow 𝑧.
3: Set initial flow 𝑧𝑖,𝑗 = 0, (𝑖, 𝑗) ∈𝐸
4: Set initial residual network 𝐹 ′ = 𝐹
5: while there exist supply/demand values different from 0 do

6: Pick supply node 𝑖 and demand node 𝑗
7: Calculate the shortest path 𝑃 from 𝑖 to 𝑗 using cost values from 𝐹 ′
8: Send the largest possible amount of flow through 𝑃
9: Update 𝐹 ′

10: Reconstruct 𝑧 from 𝐹 ′

Formally, we have the following problem:

minimize
∑

(𝑖,𝑗)∈𝐸
𝑐𝑖,𝑗𝑧𝑖,𝑗 , (A.1a)

subject to
∑
𝑗∶(𝑖,𝑗)∈𝐸
𝑧𝑖,𝑗 −

∑
𝑗∶(𝑗,𝑖)∈𝐸
𝑧𝑗,𝑖 = 𝑏𝑖, 𝑖 ∈𝐺 (A.1b)

0 ≤ 𝑧𝑖,𝑗 ≤ 𝑙𝑖,𝑗 . (𝑖, 𝑗) ∈𝐸 (A.1c)

We distinguish two sets of constraints in the previous optimization problem: balance constraints (A.1b) and capacity constraints 
(A.1c). If we sum the balance constraints, we get ∑𝑖∈𝐺 𝑏𝑖 = 0 which states that the amount of supply is equal to the amount of 
demand, which is a necessary assumption to have a feasible solution.

We say that a flow is feasible if it is a feasible solution of (A.1), while we say that we have a pseudo-flow if only the capacity 
constraints are satisfied.

For a given pseudo-flow 𝑧′, a residual network 𝐹 ′ = (𝐺, 𝐸′) can be defined. We have new imbalances:

𝑏′𝑖 = 𝑏𝑖 −
( ∑
𝑗∶(𝑖,𝑗)∈𝐸
𝑧𝑖,𝑗 −

∑
𝑗∶(𝑗,𝑖)∈𝐸
𝑧𝑗,𝑖

)
,

while for each edge (𝑖, 𝑗) ∈ 𝐸 for which 𝑧′𝑖,𝑗 > 0, we add the reverse edge (𝑗, 𝑖) to the network with cost 𝑐′𝑗,𝑖 = −𝑐𝑖,𝑗 , while keeping 
the original edge. The capacity of the original edge (𝑖, 𝑗) in 𝐹 ′ is 𝑙′𝑖,𝑗 = 𝑙𝑖,𝑗 − 𝑧𝑖,𝑗 , while the capacity of the added reverse edge (𝑗, 𝑖) is 
𝑙′𝑗,𝑖 = 𝑧𝑖,𝑗 . We may notice that when adding a new edge (𝑗, 𝑖) to 𝐸′, there can already exist an edge (𝑗, 𝑖) from 𝐸. However, in our case 
of use, we will not face such an issue, i.e., we will have either (𝑖, 𝑗) or (𝑗, 𝑖) in 𝐸 and not both at the same time. The residual network 
keeps the complete information about flow 𝑧′ which can be reconstructed from 𝐹 ′.

The concept of residual network is important for the development of algorithms for solving (A.1). In this moment, we will not 
discuss the existence of a feasible solution in general since later we will show that it always exists in our case of use.

A cost of a particular path or cycle in the flow network is calculated as the sum of the costs of edges in that path or cycle. For an 
optimal flow 𝑧∗, we have the following result.

Proposition A.1. A flow 𝑧∗ is optimal if and only if there are no cycles of negative cost in the residual network 𝐹 (𝑧∗).

Bearing in mind Proposition A.1, a simple algorithm can be constructed to solve (A.1). Namely, we construct an initial feasible 
flow in our network, then search for the negative cycles and eliminate them.

However, a more useful algorithm for us is the Successive Shortest Path (SSP) algorithm for solving the minimum-cost flow 
problem. The algorithm is provided as Algorithm 1.

The shortest path 𝑃 can be calculated using the Bellman-Ford algorithm since 𝐹 ′ may contain negative values. The largest possible 
amount of flow through 𝑃 is calculated as

𝛿 =min{𝑏′𝑖 , |𝑏′𝑗 |, 𝑐′𝑖1 ,𝑗1 for (𝑖1, 𝑗1) ∈ 𝑃 }.

The residual network is then updated such that

• 𝑏′𝑖 = 𝑏
′
𝑖 − 𝛿, 𝑏

′
𝑗 = 𝑏

′
𝑗 + 𝛿

• 𝑐′𝑖,𝑗 = 𝑐
′
𝑖,𝑗 − 𝛿, 𝑐

′
𝑗,𝑖 = 𝑐

′
𝑗,𝑖 + 𝛿 for (𝑖, 𝑗) ∈ 𝑃

The idea of the proof of correctness is that sending a flow through the shortest path does not produce negative cycles in the residual 
network. Hence, when all supply is sent to the demand nodes and the feasible solution is achieved, it will be an optimal one.

We also introduce generalized network flows based on Chapter 15 of [49]. In some cases, the flow in a particular edge may be 
increased or decreased by a multiplier after it leaves the left node of the edge. Denote the multipliers with 𝑚𝑖,𝑗 for (𝑖, 𝑗) ∈ 𝐸. The 
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generalized minimum-cost flow problem is then formulated as
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Fig. B.2. Flow modeled as a bipartite graph.

minimize
∑

(𝑖,𝑗)∈𝐸
𝑐𝑖,𝑗𝑧𝑖,𝑗 ,

subject to
∑
𝑗∶(𝑖,𝑗)∈𝐸
𝑚𝑖,𝑗𝑧𝑖,𝑗 −

∑
𝑗∶(𝑗,𝑖)∈𝐸
𝑧𝑗,𝑖 = 𝑏𝑖, 𝑖 ∈𝐺

0 ≤ 𝑧𝑖,𝑗 ≤ 𝑙𝑖,𝑗 , (𝑖, 𝑗) ∈𝐸.

(A.2)

If the multiplier is greater than 1, then the flow is increased while if it is smaller than 1, then the flow is decreased.
Different theoretical results hold for the generalized minimum-cost flow problem (A.2). Fortunately, our particular case of (A.2)

allows obtaining similar properties as in the ordinary minimum-cost flow problem (A.1).

Appendix B. Duality and the combinatorial approach

In this section, the dual optimization problems of (19) and (20) are considered. In our particular case, the dual problems are 
interesting since they can be modeled using graph theory and can be solved using combinatorial optimization methods. These 
combinatorial algorithms may not be more efficient than the simplex method used for solving linear programs, but their development 
is important since they allow us to prove some interesting properties of the estimated fuzzy set. We examine optimization problem 
(19). First, we eliminate variables 𝑥𝑢, 𝑢 ∈ 𝑈 , using constraints 𝑥𝑢 = 𝑦𝑢 + 𝐴̄𝜑(𝑢) − 𝛼𝑢 and we denote 𝑀(𝑢, 𝑣) = 1 − 𝑅𝜑(𝑢, 𝑣). Then, the 
problem is reformulated as

maximize 𝑝
∑
𝑢∈𝑈
𝛼𝑢 −

∑
𝑢∈𝑈
𝑦𝑢,

subject to 𝛼𝑣 − 𝛼𝑢 ≤𝑀(𝑢, 𝑣), 𝑢, 𝑣 ∈𝑈

𝛼𝑢 − 𝑦𝑢 ≤ 𝐴̄𝜑(𝑢), 𝑢 ∈𝑈
𝑦𝑢 ≥ 0 𝑢 ∈𝑈.

(B.1)

Its dual problem is then

minimize
∑
𝑢,𝑣∈𝑈
𝑀(𝑢, 𝑣)𝑧𝑢,𝑣 +

∑
𝑢∈𝑈
𝐴̄𝜑(𝑢)𝑧0,𝑢

subject to − 𝑧0,𝑢 +
∑
𝑣∈𝑈
𝑧𝑢,𝑣 −

∑
𝑣∈𝑈
𝑧𝑣,𝑢 = −𝑝, 𝑢 ∈𝑈

𝑧0,𝑢 ≤ 1. 𝑢 ∈𝑈.

(B.2)

In (B.2), variables 𝑧𝑢,𝑣, 𝑢, 𝑣 ∈𝑈 , correspond to the first set of constraints from primal (B.1), while variables 𝑧0,𝑢, 𝑢 ∈𝑈 , correspond 
to the second set of constraints from the primal. The first set of constraints in (B.2) corresponds to variables 𝛼𝑢, 𝑢 ∈ 𝑈 , from the 
primal, while the second set of constraints corresponds to variables 𝑦𝑢, 𝑢 ∈𝑈 , from the primal.

If we sum up the equality constraints, we get ∑𝑢∈𝑈 𝑧0,𝑢 = 𝑛𝑝 where 𝑛 = |𝑈 |. Bearing this in mind, we see that (B.2) is exactly 
the minimum-cost flow problem on 𝑛 + 1 nodes where we have one supply node with imbalance 𝑏0 = 𝑛𝑝 and 𝑛 demand nodes with 
imbalances −𝑝. From the supply node to all other nodes we have flow 𝑧0,𝑢, costs 𝐴̄𝜑(𝑢), while all capacities are equal to 1. Among the 
demand nodes, there is a flow 𝑧𝑢,𝑣, 𝑢, 𝑣 ∈𝑈 , costs 𝑀(𝑢, 𝑣), and there are no capacity constraints.

To make our model even simpler, we utilize the 𝑇 -transitivity of the relation 𝑅. It is easy to verify that the 𝑇 -transitivity is 
equivalent to 𝑀(𝑢, 𝑣) +𝑀(𝑣, 𝑤) ≥𝑀(𝑢, 𝑤) for 𝑢, 𝑣, 𝑤 ∈ 𝑈 . Using this fact, we have that there is an optimal flow that does not use 
two consecutive edges that are between demand nodes. Assume that for an optimal flow 𝑧∗ we have 𝑧∗𝑢,𝑣 > 0 and 𝑧∗𝑣,𝑤 > 0, and let 
𝛿 =min(𝑧∗𝑢,𝑣, 𝑧∗𝑣,𝑤). Then the flow 𝑧∗𝑢,𝑣 − 𝛿, 𝑧∗𝑣,𝑤 − 𝛿, 𝑧∗𝑢,𝑤 + 𝛿 is feasible and at most as expensive as the previous flow, i.e., it is optimal. 
The new flow does not use two consecutive edges since either 𝑧∗𝑢,𝑣 − 𝛿 or 𝑧∗𝑣,𝑤 − 𝛿 is 0. The previous elaboration further implies that 
an optimal flow from the supply node can travel through at most one intermediary node to the destination demand node. Hence, our 
initial network flow on 𝑛 + 1 nodes can be transformed into a flow network on 2𝑛 + 1 nodes which has the form of a bipartite graph 
plus the supply node. One independent set in the bipartite graph is formed by the intermediate nodes, while the other independent 
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set is formed by the destination nodes.
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In Fig. B.2, we have an example of a bipartite network on set of instances 𝑈 = {𝑢1, 𝑢2, 𝑢3}. Since 𝑛 = 3 in this case, the bipartite 
graph has 2 ⋅ 3 + 1 = 7 nodes. Node 0 is the supply node with imbalance 𝑛𝑝. Nodes {𝑒𝑢1 , 𝑒𝑢2 , 𝑒𝑢3 } are the intermediate nodes without 
imbalances while {𝑓𝑢1 , 𝑓𝑢2 , 𝑓𝑢3 } are the destination nodes with demands −𝑝. For 𝑢 ∈ 𝑈 , the cost of edges (0, 𝑒𝑢) is 𝐴̄𝜑(𝑢) while the 
capacity is 1. For 𝑢, 𝑣 ∈𝑈 , the cost of edges (𝑒𝑢, 𝑓𝑣) is 𝑀(𝑢, 𝑣) while the capacity is unbounded. The cost of edges (𝑒𝑢, 𝑓𝑢) is then 0. If 
a flow takes path (0, 𝑒𝑢, 𝑓𝑣) in the bipartite graph for 𝑢, 𝑣 ∈ 𝑈 , and 𝑢 ≠ 𝑣, then in the original network, it means that the flow travels 
from 0 to 𝑣 using intermediate node 𝑢. If 𝑢 = 𝑣, it means that there were no intermediate nodes and that the flow travels directly from 
0 to 𝑢.

For a given flow in a bipartite network flow, there is also the corresponding residual network. In such a residual network, there 
are edges from the destination nodes to the intermediate nodes and from the intermediate nodes to the supply. The costs and the 
capacities of the new edges are then calculated as was explained in Appendix A.

The bipartite network representation is useful from the perspective of flow decomposition. For a feasible flow, it is easy to 
represent it as a sum of simple flows that go from the supply node to the destination node. In the original network, one node can 
be a destination node for some flow but also an intermediate node for a different flow. Hence, the decomposition is harder in the 
original network. The decomposition will be important later when dealing with the dual of (20).

The next question is how to reconstruct the optimal solution of the primal problem, i.e., to calculate 𝛼∗ from a solution of the 
dual 𝑧∗. Following the duality theory provided in [49], an optimal vector 𝛼∗ can be obtained as lengths of shortest paths from the 
supply node to the corresponding destination nodes in the residual network of 𝑧∗ .

Now, we examine the dual of (20). The linear program here can be rewritten similarly as (B.1), just with different granularity 
constraints. Here instead of 𝛼𝑣 − 𝛼𝑢 ≤𝑀(𝑢, 𝑣) we have 𝛼𝑣𝑅𝜑(𝑢, 𝑣) ≤ 𝛼𝑢. The dual of such formulated problem is then

minimize
∑
𝑢∈𝑈
𝐴̄𝜑(𝑢)𝑧0,𝑢,

subject to − 𝑧0,𝑢 +
∑
𝑣∈𝑈
𝑧𝑢,𝑣 −

∑
𝑣∈𝑈
𝑅𝜑(𝑣, 𝑢)𝑧𝑣,𝑢 = −𝑝, 𝑢 ∈𝑈

𝑧0,𝑢 ≤ 1. 𝑢 ∈𝑈

(B.3)

The difference between (B.2) and (B.3) is that in the latter, we have multipliers 𝑅𝜑(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑈 , instead of costs on the edges. 
More precisely a flow that goes from node 𝑣 to node 𝑢 will be multiplied with 𝑅𝜑(𝑢, 𝑣). For that purpose, we introduce the new 
notation for multipliers 𝐽 (𝑢, 𝑣) = 𝑅𝜑(𝑢, 𝑣), in order to distinguish the contexts of fuzzy relations and flow networks and to be able to 
denote the multipliers on paths, not only on edges. Due to the multipliers, we now deal with the minimum-cost flow problem on a 
generalized flow network with 𝑛 + 1 nodes among which there are 𝑛 demand nodes with demand −𝑝 and one supply node with an 
unspecified amount of supply.

We may notice that in this case, the edges of the network consist of two different groups. The first group is formed by the edges 
from the supply nodes to the demand nodes. These edges have costs and do not have multipliers. The second group is formed by 
the edges among the demand nodes. These edges, conversely, have multipliers and do not have costs. Similarly to (B.2), we are able 
to utilize the 𝑇 -transitivity of 𝑅𝜑 w.r.t. 𝑇𝑃 in a way that there is an optimal flow which does not use two consecutive edges from 
the second group. If we have three demand nodes 𝑢, 𝑣, 𝑤 ∈ 𝑈 in a network and an optimal flow that uses edges (𝑢, 𝑣) and (𝑣, 𝑤), 
we can redirect the flow to use only edge (𝑢, 𝑤) and the redirected flow will have smaller or equal loss than the original flow. This 
will further lead to a smaller or equal cost of the redirected flow which makes it optimal. Therefore, as above, there is an optimal 
solution in which a flow travels from the supply node to the destination demand node using at most one intermediate node. This 
again further implies that the initial general network on 𝑛 + 1 nodes can be transformed into a generalized bipartite flow network on 
2𝑛 +1 nodes. For the new network, the same model applies as in Fig. B.2. Using this model, we can clearly see the difference between 
the two groups of edges introduced above. The first group is formed by the edges between the supply node and the left partition of 
the bipartite graph (intermediate nodes), while the second group is formed by the edges between the two partitions of the bipartite 
graph.

As before, for a given flow on the generalized bipartite network, we have the corresponding residual network. The same properties 
apply as above except in the case when the flow passes through an edge with a multiplier. In that case, if the original edge has 
multiplier 𝐽 (𝑢, 𝑣) then the reverse edge in the residual network will have multiplier 1

𝐽 (𝑢,𝑣) which is an edge of a gain type (greater 
than 1).

We will now construct a new algorithm for solving a generalized minimum-cost flow problem on a generalized bipartite flow 
network. The algorithm is based on the existing SSP algorithm presented in Algorithm 1. Assume that we have a demand node 𝑓𝑢
to which we want to deliver some flow 𝑏. We want to deliver the flow at the cheapest possible price. If we deliver a flow using 
intermediate node 𝑒𝑣, then the amount of flow that we have to take from the supply node is 𝑏

𝐽 (𝑣,𝑢) and the cost of such flow is 𝑏𝐴̄𝜑(𝑣)
𝐽 (𝑣,𝑢) . 

In general, a price to deliver a unit of flow is a ratio of the cost of an edge from the supply to the first partition and the product of 
multipliers of edges that connect the two partitions. Bear in mind that in the residual network, a flow may use multiple edges between 
partitions (edges with multipliers) to deliver the flow. Using this, we construct the greedy approach presented as Algorithm 2.

To calculate the smallest possible cost from the supply node, we can use the shortest path method. We want to minimize the ratio 
of one cost value (from the supply to the intermediate nodes) and a product of multipliers (between intermediate and destination 
nodes). If we apply logarithms on the cost values and reciprocals of the multipliers, we may apply the Bellman-Ford algorithm to 
calculate the shortest path between the supply node and the chosen demand node in order to obtain the least costly way to transport 
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Algorithm 2 Generalized successive shortest paths.
1: Input: Bipartite flow network 𝐹 .
2: Output: Flow 𝑧.
3: Set initial flow 𝑧𝑖,𝑗 = 0, (𝑖, 𝑗) ∈𝐸
4: Set initial residual network 𝐹 ′ = 𝐹
5: while there exists a demand value different from 0 do

6: Pick a demand node 𝑖
7: Calculate the smallest possible cost from the supply node to 𝑖
8: Calculate the largest amount of flow that can be sent through the least costly path
9: Send the calculated flow through the least costly path

10: Update 𝐹 ′
11: Reconstruct 𝑧′ from 𝐹 ′

After the shortest path is determined, we have to calculate the amount of flow that will be taken from the supply node in order 
to deliver the maximal amount of flow to the demand node. In comparison with the standard minimum-cost flow problem, here 
we have to take into account all the losses and gains that happen during the flow transfer. Denote the shortest path in the residual 
network with 𝑃 = (0, 𝑒𝑢1 , 𝑓𝑢2 , 𝑒𝑢3 , … , 𝑓𝑢𝑘 ) and let 𝑏 be a demand of node 𝑓𝑢𝑘 . We would like to deliver |𝑏| (| ⋅ | stands for absolute 
value) amount of flow to the demand node from the supply node, but this is not always possible due to the capacities of particular 
edges on path 𝑃 . The maximal amount of flow can be determined recursively. The maximal amount of flow that can be transferred 
from node 𝑓𝑢𝑘−2 to node 𝑓𝑢𝑘 is bounded by the capacity of the reverse edge 𝑙′

𝑓𝑢𝑘−2 ,𝑒𝑢𝑘−1
and the demand divided with the loses on 

the edges in between |𝑏|𝐽 (𝑢𝑘−1 ,𝑢𝑘−2)
𝐽 (𝑢𝑘−1 ,𝑢𝑘)

. Using that reasoning, if we set the initial value 𝑧′ = |𝑏|, then we can use the following iteration 
formula.

𝑧′ = min
(
𝑧′𝐽 (𝑢𝑘−2𝑖+1, 𝑢𝑘−2𝑖)
𝐽 (𝑢𝑘−2𝑖+1, 𝑢𝑘−2𝑖+2)

, 𝑙′𝑓𝑢𝑘−2𝑖 ,𝑒𝑢𝑘−2𝑖+1

)
,

for 𝑖 going from 1 to 𝑘2 − 1. The last step is 𝑧′ = min( 𝑧
′

𝐽 (𝑢1 ,𝑢2)
, 𝑙′0,𝑒𝑢1

) for subpath (0, 𝑒𝑢1 , 𝑓𝑢2 ).
After 𝑧′ is calculated, we have to determine the amount of flow that will end up in the demand node 𝑓𝑢𝑘 as well as to update the 

residual network on path 𝑃 . In the first step, 𝑧′ leaves the supply node, passes node 𝑒𝑢1 and enters node 𝑓𝑢2 . On edge (𝑒𝑢1 , 𝑓𝑢2 ) it was 
multiplied with 𝐽 (𝑢1, 𝑢2): 𝑧′ = 𝐽 (𝑢1, 𝑢2)𝑧′. Then we update the residual network on edges (𝑓𝑢2 , 𝑒𝑢1 ) and (𝑓𝑢2 , 𝑒𝑢3 ): 𝑙

′
𝑓𝑢2 ,𝑒𝑢1

= 𝑙′
𝑓𝑢2 ,𝑒𝑢1

+ 𝑧′, 
𝑙′
𝑓𝑢2 ,𝑒𝑢3

= 𝑙′
𝑓𝑢2 ,𝑒𝑢3

− 𝑧′ and we send the flow to the next node from the second partition and repeat the process. After the remaining flow 
arrives at the demand node, we increase the imbalance of the demand node.

Since Algorithm 2 is novel, we cannot benefit from the existing theory as we did in the case of Algorithm 1. In Appendix C, we 
will show that Algorithm 2 indeed returns an optimal result, as well as how to construct a solution of the primal problem from the 
solution of the dual one. As is shown in Appendix C, 𝛼∗ is constructed by performing step 7 (without logarithms) of Algorithm 2 on 
the residual network of 𝑧∗, i.e., it is the smallest possible cost of the transport from the supply node to the destination nodes.

Appendix C. Proof of correctness for Algorithm 2

In this section we prove that Algorithm 2 terminates and that it outputs an optimal solution. Also, we construct a way to obtain 
a solution of the primal problem from the solution of the dual one.

We first prove the termination.

Proposition C.1. Assume that all parameters in Algorithm 2 are rational numbers. Then Algorithm 2 terminates.

Proof. It is easy to see that if we multiply the right side of the constraints in (B.3) with a positive constant 𝐶 , the optimal solution is 
𝐶𝑧∗ where 𝑧∗ is the solution of the initial problem. For some parameter 𝑎 in (B.3) we have its rational representation 𝑎 = 𝑞

𝑟
for 𝑞 and 

𝑟 being integers. Let 𝐶 be the least common multiple (LCM) of all integers 𝑞 and 𝑟 for all parameters in (B.3). If we multiply the right 
side of the constraints in (B.3) with 𝐶 , then all the demand values will become integers and all intermediate flows in Algorithm 2
will become integers. That further implies that all the updates on demands in Algorithm 2 will be integers which further implies that 
the algorithm will terminate in at most 𝐶𝑝𝑛 steps. □

In practice, the termination is always guaranteed since computers can work only with rational numbers.
Now, let us define a flow cycle in the residual generalized bipartite network. The cycle starts with an edge from the first part 

(costly edges without multipliers) of the network, then it contains edges from the second part (edges with multipliers without costs) 
and ends with a reverse edge from the first part. A model of such cycle is shown in Fig. C.3.

In Fig. C.3, the dashed line between 𝑒𝑢1 and 𝑒𝑢2 stands for the subpath that contains only the edges from the second part of 
the residual network. Also, it may hold that 𝑒𝑢1 ≡ 𝑒𝑢2 . In that case, the cycle consists only of the edges from the second part. Let 
𝐽 (𝑒𝑢1 , … , 𝑒𝑢2 ) be a multiplier of the path that consists of the edges from the second part of the residual network, i.e., a product of 
the multipliers on the edges from the path. We say that the cycle is of negative cost if 𝐴𝜑(𝑢1) < 𝐽 (𝑒𝑢1 , … , 𝑒𝑢2 )𝐴𝜑(𝑢2). As a reminder, 
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𝐴𝜑(𝑢1) and 𝐴𝜑(𝑢2) are the costs on edges (0, 𝑒𝑢1 ) and (0, 𝑒𝑢2 ). The reason why the cycle is of negative cost is that if we send a unit of 
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𝑒𝑢1

𝑒𝑢2

Fig. C.3. Cycle in a generalized bipartite network.

flow along it, the cost of that flow is 𝐴𝜑(𝑢1) − 𝐽 (𝑒𝑢1 , … , 𝑒𝑢2 )𝐴𝜑(𝑢2), i.e., the cost is negative. Such flow would not change any demand 
value on the destination nodes but it will reduce the overall cost of the flow.

The next proposition utilizes the bipartite representation of the flow network.

Proposition C.2. Every flow in a generalized bipartite network can be represented as a sum of a finite number of simple path flows from the 
supply node to a destination node.

Proof. Let 𝑧 be a flow and consider an edge (𝑒𝑢1 , 𝑓𝑢2 ) from the second part of the network and its flow value 𝑧𝑒𝑢1 ,𝑓𝑢2 . This edge 
receives a flow from edge (0, 𝑒𝑢1 ) which is a part of path flow 𝑧𝑃 from path 𝑃 = (0, 𝑒𝑢1 , 𝑓𝑢2 ) that connects the supply node and the 
destination node 𝑓𝑢2 . 𝑧𝑃 is then a summand in the representation while the remaining flow 𝑧 − 𝑧𝑃 has no flow on the edge (𝑒𝑢1 , 𝑓𝑢2 )
and hence we can remove that edge from the network flow. If we continue, in every step we will construct one summand and remove 
one edge from the second part of the network. Since we have a finite number of edges, we have a finite number of summands. □

We have the following result.

Proposition C.3. Solution 𝑧∗ is optimal in the generalized bipartite network if and only if its residual network does not contain negative cost 
cycles.

Proof. (⇒) When the solution is optimal, there are no negative cost cycles. If otherwise, we could send a flow through a negative 
cost cycle and we would decrease the cost of the overall flow as described above. That contradicts the optimality.

(⇐) Assume that 𝑧∗ is a feasible solution whose residual network does not contain negative cost cycles and let 𝑧′ be a feasible 
solution. Let 𝑧′ = 𝑧∗ + 𝑧′′. We first show that 𝑧′′ is a feasible flow from the residual network of 𝑧∗, i.e., it satisfies its constraints. 
For an edge (0, 𝑒𝑢1 ) if the flows are different, we can have either 𝑧′0,𝑒𝑢1

> 𝑧∗0,𝑒𝑢1
or 𝑧′0,𝑒𝑢1

< 𝑧∗0,𝑒𝑢1
. In the first case, it holds that 

𝑧′0,𝑒𝑢1
= 𝑧∗0,𝑒𝑢1

+ 𝑧′′0,𝑒𝑢1
, i.e., 𝑧′′0,𝑒𝑢1

uses the original edge. Since 𝑧′0,𝑒𝑢1
≤ 1 then 𝑧′′0,𝑒𝑢1

≤ 1 − 𝑧∗0,𝑒𝑢1
which is a constraint from the residual 

network. In the second case, it holds that 𝑧′0,𝑒𝑢1
= 𝑧∗0,𝑒𝑢1

− 𝑧′′
𝑒𝑢1 ,0

, i.e., 𝑧′′
𝑒𝑢1 ,0

uses the reverse edge. Since 𝑧′0,𝑒𝑢1
≥ 0 then 𝑧′′

𝑒𝑢1 ,0
≤ 𝑧∗0,𝑒𝑢1

which is a constraint for the reverse edge from the residual network. Using similar reasoning, we can conclude the same for the 
whole network.

The next step is to show that 𝑧′′ is a sum of a finite number of simple flow cycles, as shown in Fig. C.3, i.e., it has a cycle 
representation. Proposition C.2 states that both flows 𝑧′ and 𝑧∗ are sums of simple flows on paths from the supply node to a 
destination node. Take a summand 𝑧′

𝑃1
of 𝑧′ and summand 𝑧∗

𝑃2
of 𝑧∗ for 𝑃1 = (0, 𝑒𝑢1 , 𝑓𝑢3 ) and 𝑃2 = (0, 𝑒𝑢2 , 𝑓𝑢3 ). The paths have the same 

destination node. Assume that the first summand delivers amount 𝑏1 of flow to the destination node while the second delivers amount 
𝑏2 of flow to the same node. W.L.O.G. assume that 𝑏1 ≥ 𝑏2. Then the flow 𝑏2

𝑏1
𝑧′
𝑃1

− 𝑧∗
𝑃2

is a flow along cycle (0, 𝑒𝑢1 , 𝑓𝑢3 , 𝑒𝑢2 , 0) and one of 
the summands in the cycle representation of 𝑧′′. After the summand is identified, we remove its flow from the consideration. In that 
moment, 𝑧∗

𝑃2
is fully removed while we are left with (1 − 𝑏2

𝑏1
)𝑧′
𝑃1

from the first path. We continue to create flow cycles as summands 
from the remaining path flows from 𝑧′ and 𝑧∗. Since after every summand is identified we remove one path flow, the number of 
summands is finite. Hence, 𝑧′′ is a sum of a finite number of cycle flows. Since 𝑧′′ is a flow in the residual network of 𝑧∗, all the 
cycles from its cycle representation are of positive cost by the assumption which implies that 𝑧′′ is of positive cost. Since the cost of 
𝑧′ is a sum of costs of 𝑧∗ and 𝑧′′, the cost of 𝑧′ is larger than the cost of 𝑧∗. Since flow 𝑧′ was an arbitrary feasible flow, we conclude 
that 𝑧∗ is an optimal flow. □

Proposition C.4. Algorithm 2 returns an optimal solution.

Proof. Assume that in one iteration of Algorithm (2), the shortest path had the form 𝑃1 = (0, 𝑒𝑢2 , … , 𝑓𝑢3 ) and that after the step, the 
negative cost cycle (0, 𝑒𝑢1 , … , 𝑓𝑢3 , … , 𝑒𝑢2 , 0) was formed. The negative cost cycle is formed from the path 𝑃2 = (0, 𝑒𝑢1 , … , 𝑓𝑢3 ) and the 
reverse path 𝑃1. The model of such a cycle is represented in Fig. C.4. The dots in the cycle as well as the dashed edges in the figure 
stand for edges from the second part of the residual network (edges with multipliers). If the cycle is negative, then it holds that
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𝐴𝜑(𝑢1) < 𝐽 (𝑒𝑢1 ,… , 𝑓𝑢3 )𝐽 (𝑓𝑢3 ,… , 𝑒𝑢2 )𝐴𝜑(𝑢2).
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0

𝑒𝑢1

𝑓𝑢3

𝑒𝑢2

Fig. C.4. Cycle after one step of Algorithm 2.

The latter is equivalent to 𝐴𝜑(𝑢1)
𝐽 (𝑒𝑢1 ,…,𝑓𝑢3 )

<
𝐴𝜑(𝑢2)
𝐽 (𝑒𝑢2 ,…,𝑓𝑢3 )

which states that path 𝑃2 is actually shorter than 𝑃1 which contradicts the 
assumption that 𝑃1 is the shortest path at this step.

Hence, at every iteration of Algorithm 2, there are no negative cost cycles and as soon as the feasible solution is achieved, it will 
be an optimal one according to Proposition C.3. □

After we constructed the algorithm that solves the dual optimization problem, we need to obtain an optimal solution for the 
primal which was our initial goal. First, we need one technical proposition.

Proposition C.5. For a given generalized bipartite network, there exists an optimal solution 𝑧∗ for which it holds

𝑧∗0,𝑒𝑢
> 0 ⟹ 𝑧∗𝑒𝑢,𝑓𝑢 > 0.

Proof. Assume that for some solution 𝑧∗ and some instance 𝑢 we have that 𝑧∗0,𝑒𝑢 > 0 and 𝑧∗
𝑒𝑢,𝑓𝑢

= 0. Then, in the simple path 
decomposition of the flow, we have path (0, 𝑒𝑣, 𝑓𝑢) that delivers flow to 𝑓𝑢, and path (0, 𝑒𝑢, 𝑓𝑤) that uses flow from edge (0, 𝑒𝑢). 
Then, in the residual network of 𝑧∗, 𝐶 = (𝑒𝑢, 𝑓𝑢, 𝑒𝑣, 𝑓𝑤, 𝑒𝑢) is a cycle. Due to transitivity of 𝑅, it holds that

𝐽 (𝑣, 𝑢)𝐽 (𝑢,𝑤) ≤ 𝐽 (𝑣,𝑤).
If 𝐽 (𝑣, 𝑢)𝐽 (𝑢, 𝑤) < 𝐽 (𝑣, 𝑤), then 𝐶 is a negative cost cycle which contradicts the optimality of 𝑧∗. If 𝐽 (𝑣, 𝑢)𝐽 (𝑢, 𝑤) = 𝐽 (𝑣, 𝑤) then cycle 
𝐶 is a zero-cost cycle and a flow can be sent through the cycle without violating optimality. Hence, sending some amount of flow 
through the cycle, we will construct another optimal solution 𝑧∗∗ where 𝑧∗∗

𝑒𝑢,𝑓𝑢
> 0. □

In practice, if we obtain an optimal solution containing an edge for which the previous proposition does not hold, we can get 
another optimal solution, without such edges, as explained in the proof of the previous proposition. From now on, we assume that 
we have an optimal solution for which the previous proposition holds.

We continue with the duality theory of linear programs.
According to the strong duality theorem [50], if there exists an optimal solution of the dual problem 𝑧∗ then, there exists an 

optimal solution for the primal problem 𝛼∗, and it holds that the values of objectives in (B.1) and in (B.3) are equal, i.e.,∑
𝑢∈𝑈
𝐴̄𝜑(𝑢)𝑧∗0,𝑢 =

∑
𝑢∈𝑈
𝑝𝛼∗𝑢 −

∑
𝑢∈𝑈

max(𝛼∗𝑢 − 𝐴̄𝜑(𝑢),0). (C.1)

In the previous expression, 𝑦𝑢 is replaced with its definition. In an optimal solution, for 𝑢 ∈ 𝑈 , we have that∑
𝑣∈𝑈
𝑧∗𝑢,𝑣 = 𝑧

∗
0,𝑢,

∑
𝑣∈𝑈
𝑅𝜑(𝑣, 𝑢)𝑧∗𝑣,𝑢 = 𝑝. (C.2)

We have the following equalities:∑
𝑢∈𝑈

max(𝛼∗𝑢 − 𝐴̄𝜑(𝑢),0) =
∑
𝑢∈𝑈
𝑝𝛼∗𝑢 −

∑
𝑢∈𝑈
𝐴̄𝜑(𝑢)𝑧∗0,𝑢

=
∑
𝑢∈𝑈
𝑝𝛼∗𝑢 −

∑
𝑢∈𝑈

(𝐴̄𝜑(𝑢) − 𝛼∗𝑢 )𝑧
∗
0,𝑢 −

∑
𝑢∈𝑈
𝛼∗𝑢 𝑧

∗
0,𝑢

=
∑
𝑢∈𝑈
𝑝𝛼∗𝑢 −

∑
𝑢∈𝑈

(𝐴̄𝜑(𝑢) − 𝛼∗𝑢 )𝑧
∗
0,𝑢 −

∑
𝑢∈𝑈
𝛼∗𝑢

∑
𝑣∈𝑈
𝑧∗𝑢,𝑣

=
∑
𝑢∈𝑈
𝑝𝛼∗𝑢 −

∑
𝑢∈𝑈

(𝐴̄𝜑(𝑢) − 𝛼∗𝑢 )𝑧
∗
0,𝑢

−
∑
𝑢,𝑣∈𝑈

(𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼
∗
𝑣 )𝑧

∗
𝑢,𝑣 −

∑
𝑢,𝑣∈𝑈
𝑅𝜑(𝑢, 𝑣)𝛼∗𝑣𝑧

∗
𝑢,𝑣∑

∗
∑
̄ ∗ ∗
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=
𝑢∈𝑈
𝑝𝛼𝑢 −
𝑢∈𝑈

(𝐴𝜑(𝑢) − 𝛼𝑢 )𝑧0,𝑢
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0

𝑒𝑢1 𝑓𝑢1

𝑓𝑢2

𝑓𝑢3

𝐶𝑐

𝐶𝑎

𝐶𝑦

𝑥

−𝑥

𝐶𝑏

𝐶𝑑

Fig. D.5. Flow modeled as a bipartite graph.

−
∑
𝑢,𝑣∈𝑈

(𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼
∗
𝑣 )𝑧

∗
𝑢,𝑣 −

∑
𝑣∈𝑈
𝛼∗𝑣

∑
𝑢∈𝑈
𝑅𝜑(𝑢, 𝑣)𝑧∗𝑢,𝑣

=
∑
𝑢∈𝑈

(𝛼∗𝑢 − 𝐴̄𝜑(𝑢))𝑧
∗
0,𝑢 −

∑
𝑢,𝑣∈𝑈

(𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼
∗
𝑣 )𝑧

∗
𝑢,𝑣.

The second equality holds because of the left expression in (C.2) while the last equality holds because the right expression in 
(C.2). We have that for all 𝑢 ∈𝑈 , max(𝛼∗𝑢 − 𝐴̄𝜑(𝑢), 0) ≥ (𝛼∗𝑢 − 𝐴̄𝜑(𝑢))𝑧

∗
0,𝑢 and that for all 𝑢, 𝑣 ∈𝑈 , 𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼∗𝑣 ≥ 0, since 𝛼∗ is a feasible 

solution. Hence, for the previous equality to hold, we need to have that for all 𝑢 ∈𝑈 , max(𝛼∗𝑢 − 𝐴̄𝜑(𝑢), 0) = (𝛼∗𝑢 − 𝐴̄𝜑(𝑢))𝑧
∗
0,𝑢 and that for 

all 𝑢, 𝑣 ∈𝑈 , (𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼∗𝑣 )𝑧∗𝑢,𝑣 = 0. The latter is equivalent to the following set of conditions.

• 𝑧∗0,𝑢 = 0 ⟹ 𝛼∗𝑢 ≤ 𝐴̄𝜑(𝑢),
• 0 < 𝑧∗0,𝑢 < 1 ⟹ 𝛼

∗
𝑢 = 𝐴̄𝜑(𝑢),

• 𝑧∗0,𝑢 = 1 ⟹ 𝛼∗𝑢 ≥ 𝐴̄𝜑(𝑢),
• 𝑧∗𝑢,𝑣 > 0 ⟹ 𝛼∗𝑢 −𝑅𝜑(𝑢, 𝑣)𝛼∗𝑣 = 0,

for 𝑢, 𝑣 ∈ 𝑈 . We have the following conclusion: if we solve the dual optimization problem and obtain an optimal solution 𝑧∗, then a 
solution of the primal optimization problem is any 𝛼∗ which satisfies the conditions listed above.

Moreover, 𝛼∗ can be constructed by performing step 7 of Algorithm 2 on the residual network of 𝑧∗, i.e., it is the smallest possible 
cost of the transport from the supply node to the destination nodes. It is easily verifiable that such 𝛼∗ satisfies the conditions above. 
The proof of this verification lies in that if we assume that some condition is not satisfied, then we would have a negative cost cycle 
which contradicts the optimality of 𝑧∗. To prove the contradiction, we need Proposition C.5.

Appendix D. Proof of Proposition 6.3

Let 𝛼𝑝𝑢 = 𝜑(𝐴̂𝑝(𝑢)) and 𝛼𝑞𝑢 = 𝜑(𝐴̂𝑞(𝑢)) for 𝑢 ∈𝑈 . Then 𝐴̂𝑝(𝑢) ≤ 𝐴̂𝑞(𝑢) ⇔ 𝛼𝑝𝑢 ≤ 𝛼𝑞𝑢 . To prove this proposition, we will use Algorithm 1 in 
case of 𝑇𝐿 and Algorithm 2 in case if 𝑇𝑃 . We apply both algorithms on the bipartite flow network in the way that we first deliver 
amount 𝑝 of flow to every destination node, then we calculate 𝛼𝑝 as the smallest cost from the supply node to the destination nodes 
in the residual network, then we deliver additional amount 𝑞 − 𝑝 of flow to every destination node and then we calculate 𝛼𝑞 in the 
same way as 𝛼𝑝. Using this procedure, we may notice that to calculate 𝛼𝑞 we need a few more iterations of the algorithms after 𝛼𝑝. 
Bearing this in mind, it is enough to prove that after every iteration of the algorithm, i.e., after sending some amount of flow to a 
destination node and updating the residual network, the cost from the supply node to every destination node stayed the same or is 
increased.

When updating residual network 𝐹 ′, the possible changes in the residual networks are the following:

• Reverse edges between the supply node and the intermediate nodes can be added while the original edges can be removed.
• Reverse edges between the intermediate and destination nodes can be added or removed.

Adding reverse edges between the supply node and intermediate nodes is not important in this case, since shortest paths do not use 
these edges. Removing the original edges between the same nodes will not reduce the costs since the shortest paths now chose among 
the smaller set of edges. The same holds if we remove reverse edges between the intermediate nodes.

The last step is to prove that adding reverse edges between the intermediate and destination nodes will not reduce the costs from 
the supply to the destination nodes.

For that purpose, we consider Fig. D.5.
With dashed lines, we denote certain paths for which the costs are marked on the figure. In both cases of 𝑇𝐿 and 𝑇𝑃 , the costs are 
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the values used to calculate the shortest paths. Assume that in step 𝑖, we were calculating the shortest path between 0 and 𝑓𝑢2 and 
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we obtained that the shortest path is (0, … , 𝑒𝑢1 , 𝑓𝑢1 , … , 𝑓𝑢2 ) and since some flow is sent through that path, a reverse edge (𝑓𝑢1 , 𝑒𝑢1 ) is 
created with cost −𝑥. Assume that before step 𝑖, the shortest path from 0 to 𝑓𝑢3 was (0, … , 𝑓𝑢3 ) with cost 𝐶𝑦 while after the previous 
step and after adding reverse edge (𝑓𝑢1 , 𝑒𝑢1 ) the shortest path is (0, … , 𝑓𝑢1 , 𝑒𝑢1 , … , 𝑓𝑢3 ) with cost 𝐶𝑎 − 𝑥 + 𝐶𝑏. Then, we have that 
𝐶𝑎 + 𝐶𝑏 < 𝑥 + 𝐶𝑦. Since the shortest path in step 𝑖 was (0, … , 𝑒𝑢1 , 𝑓𝑢1 , … , 𝑓𝑢2 ), it holds that 𝐶𝑐 + 𝑥 ≤ 𝐶𝑎. Adding this to the previous 
expression, we have that

𝑥+𝐶𝑦 > 𝐶𝑎 +𝐶𝑏 ≥ 𝐶𝑐 + 𝑥+𝐶𝑏⇔ 𝐶𝑦 > 𝐶𝑐 +𝐶𝑏.
The last inequality contradicts the assumption that before step 𝑖, the smallest cost between 0 and 𝑓𝑢3 is 𝐶𝑦.
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