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Abstract. Traditionally, membership to the fuzzy-rough lower, resp.
upper approximation is determined by looking only at the worst, resp.
best performing object. Consequently, when applied to data analysis
problems, these approximations are sensitive to noisy and/or outlying
samples. In this paper, we advocate a mitigated approach, in which mem-
bership to the lower and upper approximation is determined by means
of an aggregation process using ordered weighted average operators. In
comparison to the previously introduced vaguely quantified rough set
model, which is based on a similar rationale, our proposal has the ad-
vantage that the approximations are monotonous w.r.t. the used fuzzy
indiscernibility relation. Initial experiments involving a feature selection
application confirm the potential of the OWA-based model.
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1 Introduction

The operations of lower and upper approximation are at the heart of rough set
theory [6] and many of its applications; based on objects’ indiscernibility, they
determine those objects that certainly, resp. possibly belong to a given concept.
More specifically, an object belongs to the lower approximation of a concept if
all objects indiscernible from it belong to the concept as well, and to its upper
approximation if at least one object indiscernible from it belongs to the concept.

Fuzzy rough set theory [5] extends the approximation operators by allowing
the indiscernibility relation as well as the concept itself to become fuzzy. While
this generalization provides for greater flexibility, the commonly used definitions
of fuzzy-rough approximations (see e.g. [7]) do not address the full potential
of hybridization; in particular, the process of determining the membership de-
grees to the approximations still depends on a single object, as dictated by the
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quantifiers ∀ and ∃ from the crisp definitions. As a consequence of this non-
compensatory approach, slight changes to the data sometimes result in dras-
tically different approximations. This, in turn, impacts the robustness of data
analysis applications based on them, such as feature selection and classification.

These considerations inspired the vaguely quantified rough set (VQRS) model
[1]: by replacing the crisp quantifiers ∀ and ∃ by softer versions representing most
and some, it ensures that several objects contribute to an object’s membership
degree to the approximations. Unfortunately, this benefit goes at the expense of
certain theoretically desirable properties for (fuzzy-)rough approximations (see
e.g. [2] for an overview). Most importantly, as was noted in [3], the failure of
monotonicity of the VQRS lower approximation w.r.t. the fuzzy indiscernibility
relation hampers feature selection based on it.

In this paper, we propose an alternative fuzzy-rough hybridization based on
ordered weighted average (OWA) operators [9], in which membership degrees to
the approximations are computed by an aggregation process. As such, like the
VQRS approach, our proposal allows for compensation; on the other hand, com-
pared to VQRS, the OWA-based approach has a number of important benefits:
1) it is monotonous w.r.t. the fuzzy indiscernibility relation, 2) the traditional
fuzzy-rough approximations can be recovered by a particular choice of the OWA
weight vectors, and 3) the VQRS rationale can be maintained by introducing
vague quantifiers into the OWA model, following the proposal in [10].

The remainder of the paper is organized as follows: in Section 2, we recall
necessary preliminaries about fuzzy-rough hybrizidation and OWA operators,
while in Section 3 we introduce OWA-based fuzzy rough sets, give some examples
and examine their monotonicity characteristics. In Section 4, we apply our model
to a feature selection task, comparing it to the traditional fuzzy-rough approach
as well as to the VQRS model. Finally, in Section 5, we conclude and outline
future work.

2 Preliminaries

2.1 Fuzzy Rough Sets

According to Pawlak [6], the lower and upper approximation of a crisp set A ⊆ X
w.r.t. an equivalence relation R are defined by, for y in X,

y ∈ R↓A iff [y]R ⊆ A (1)

y ∈ R↑A iff [y]R ∩A 6= ∅ (2)

or, equivalently,

y ∈ R↓A iff (∀x ∈ X)((x, y) ∈ R⇒ x ∈ A) (3)

y ∈ R↑A iff (∃x ∈ X)((x, y) ∈ R ∧ x ∈ A) (4)
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When A is a fuzzy set and R is a fuzzy relation3 in X, equations (3) and (4) can
be extended using a fuzzy implication4 I and a t-norm5 T to

(R↓A)(y) = inf
x∈X

(I(R(x, y), A(x)) (5)

(R↑A)(y) = sup
x∈X

(T (R(x, y), A(x)) (6)

for y ∈ X. [7] When A and R are both crisp, (1) and (2) are recovered.

2.2 Vaguely Quantified Rough Sets

The inf and sup operations in (5) and (6) play the same role as the ∀ and
∃ quantifiers in (1) and (2). Because of this, a change to a single object can
have a large impact on the approximations. This makes fuzzy rough sets equally
susceptible to noisy data —which is difficult to rule out in real-life applications—
as their crisp counterparts.

To make up for this shortcoming, it was proposed in [1] to replace the univer-
sal and existential quantifier by means of vague quantifiers like most and some.
Mathematically, vague quantifiers are modeled by a regularly increasing fuzzy
quantifier: an increasing [0, 1] → [0, 1] mapping Q that satisfies the boundary
conditions Q(0) = 0 and Q(1) = 1. As an example, the following parametrized
formula, for 0 ≤ α < β ≤ 1, and x in [0, 1],

Q(α,β)(x) =


0, x ≤ α
2(x−α)2
(β−α)2 , α ≤ x ≤ α+β

2

1− 2(x−β)2
(β−α)2 ,

α+β
2 ≤ x ≤ β

1, β ≤ x

(7)

generates a regularly increasing fuzzy quantifier. For instance,Q(0.2,1) andQ(0,0.6)

may be used to model the vague quantifiers most and some. Once a couple
(Ql, Qu) of fuzzy quantifiers is fixed, the Ql-lower and Qu-upper approximation
of a fuzzy set A under a fuzzy relation R are defined by, for all y in X,

(R↓Ql
A)(y) = Ql

(
|[y]R ∩A|
|[y]R|

)
(8)

(R↑Qu
A)(y) = Qu

(
|[y]R ∩A|
|[y]R|

)
(9)

3 Typically, it is assumed that R is at least a fuzzy tolerance relation, i.e., R is reflexive
and symmetric.

4 A fuzzy implicationI is a [0, 1]2 → [0, 1] mapping which is decreasing in its first argu-
ment, and increasing in its second argument, and which satisfies I(0, 0) = I(0, 1) =
I(1, 1) = 1 and I(1, 0) = 0.

5 A t-normT is a commutative, associative [0, 1]2 → [0, 1] mapping which is increasing
in both arguments, and which satisfies T (1, x) = x for x in [0, 1].
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2.3 Ordered Weighted Average Aggregation

The OWA operator [9] models an aggregation process in which a sequence A of
n scalar values are ordered decreasingly and then weighted according to their
ordered position by a weighting vector W = 〈wi〉, such that wi ∈ [0, 1] and
Σn
i wi = 1. In particular, if ci represents the ith largest value in A,

OWAW (A) =

n∑
i=1

wici (10)

The OWA’s main strength is its flexibility, since it enables us to model a
wide range of aggregation strategies. For example, the maximum, minimum and
average can all be modelled by means of OWA operators:

1. Maximum: Wmax = 〈wi〉, where w1 = 1, wi = 0, i 6= 1
2. Minimum: Wmin = 〈wi〉, where wn = 1, wi = 0, i 6= n
3. Average: Wavg = 〈wi〉, where wi = 1

n , i = 1, . . . , n

The OWA operator can be analysed by several measures, among which the
orness-degree and andness-degree that compute how similar its behaviour is to
that of max, respectively min:

orness(W ) =
1

n− 1

n∑
i=1

((n− i) · wi) (11)

andness(W ) = 1− orness(W ) (12)

Note that orness(Wmax) = 1, andness(Wmin) = 1 and orness(Wavg) = 0.5.

3 OWA-Based Lower and Upper Approximation

Let R be a fuzzy relation in X and A a fuzzy set in X = {x1, . . . , xn}. Moreover,
let T be a t-norm and I a fuzzy implication. The OWA-based lower and upper
approximation of A under R with weight vectors Wl and Wu are defined as

(R↓Wl
A)(y) = OWAWl

〈I(R(xi, y), A(xi))〉 (13)

(R↑WuA)(y) = OWAWu〈T (R(xi, y), A(xi))〉 (14)

In order to distinguish the behaviour of lower and upper approximation, we
enforce the conditions andness(Wl) > 0.5 and orness(Wu) > 0.5. Note that the
traditional lower and upper approximation are retrieved when Wl = Wmin and
Wu = Wmax. Below, we give two examples of constructing the OWA weight
vectors in order to relax the traditional definitions.

Example 1. Let m ≤ n. It is possible to define Wl = 〈wli〉 and Wu = 〈wui 〉 as

wln+1−i =

{
2m−i

2m−1 i = 1, . . . ,m

0 i = m+ 1, . . . , n
(15)

wui =

{
2m−i

2m−1 i = 1, . . . ,m

0 i = m+ 1, . . . , n
(16)
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It can be verified that andness(Wl) > 0.5 and orness(Wu) > 0.5. E.g., if n = 8,
and m = 3, Wl = 〈0, 0, 0, 0, 0, 1/7, 2/7, 4/7〉.

Example 2. In [10], Yager proposed to simulate vague quantifiers by means of
OWA operators. In particular, given regularly increasing fuzzy quantifiers Ql
and Qu, weight vectors WQl

= 〈wli〉 and WQu = 〈wui 〉 can be defined as

wli = Ql

(
i

n

)
−Ql

(
i− 1

n

)
(17)

wui = Qu

(
i

n

)
−Qu

(
i− 1

n

)
(18)

It can be verified that if Ql = Q(α,1) (resp., Qu = Q(0,β)), then andness(WQl
) >

0.5 (resp., orness(WQu) > 0.5). For instance, if n = 8, and Ql = Q(0.2,1),
WQl

= 〈0, 0.01, 0.09, 0.18, 0.28, 0.24, 0.14, 0.06〉.

Next, we list two important propositions which follow from the monotonicity
of I, T , and OWA operators.

Proposition 1. Let A1 ⊆ A2 be fuzzy sets in X, and R be a fuzzy relation in
X. Then R↓Wl

A1 ⊆ R↓Wl
A2 and R↑WuA1 ⊆ R↑WuA2.

Proposition 2. Let R1 ⊆ R2 be fuzzy relations in X, and A be a fuzzy set in
X. Then R1↓Wl

A ⊇ R2↓Wl
A and R1↑Wu

A ⊆ R2↑Wu
A.

Note that the second proposition does not hold for VQRS [3], which is due to
the fact that R occurs both in the numerator and denominator of (8) and (9).

4 Application to Feature Selection

4.1 Fuzzy-Rough Feature Selection

The purpose of feature selection is to eliminate redundant or misleading at-
tributes from a data set, typically with the purpose of creating faster and more
accurate classifiers. For our purposes, a decision system (X,A∪ {d}) consists of
non-empty sets of objects X = {x1, ..., xn} and conditional attributes (features)
A = {a1, ..., an}, together with a decision attribute d 6∈ A. Attributes can be
either quantitative or discrete; in this paper, we assume that d is always discrete.
To express the approximate equality between two objects w.r.t. a quantitative
attribute a, in this paper we use the fuzzy relation Ra, defined by, for x and y
in X (σa denotes the standard deviation of a):

Ra(x, y) = max

(
min

(
a(y)− a(x) + σa

σa
,
a(x)− a(y) + σa

σa

)
, 0

)
(19)

For a discrete attribute a, Ra(x, y) = 1 if a(x) = a(y) and Ra(x, y) = 0 otherwise.
Given a t-norm T , for any B ⊆ A, the fuzzy B-indiscernibility relation can be
defined by

RB(x, y) = T (Ra(x, y)︸ ︷︷ ︸
a∈B

) (20)
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The fuzzy B-positive region is then defined as the union of lower approximations
of all decision classes w.r.t. RB . In particular, for y in X, we have [4]

POSB(y) = (RB↓[y]Rd
)(y) (21)

The predictive ability w.r.t. d of the attributes in B can be measured by the
degree of dependency of d on B, defined as γB = |POSB |/|X|.

The goal of fuzzy-rough feature selection is then to find decision reducts:
subsets B of A that satisfy γB = γA and cannot be further reduced, i.e., there
exists no proper subset B′ of B such that γB′ = γA. In practice, minimality
is often not necessary, and the corresponding subsets are called superreducts.
In order to obtain a single superreduct of (X,A ∪ {d}), in this paper we use
the following hillclimbing heuristic: starting with an empty set B, we compute
γB∪{a} for every attribute a and add the attribute for which this value is highest
to B. This process is repeated for the remaining attributes until γB = γA.

4.2 VQRS- and OWA-Based Feature Selection

Since the fuzzy positive region in (21) uses the “traditional” lower approximation
(5), it is sensitive to small changes in the data. For this reason, following [3], we
can replace ↓ by ↓Ql

, giving rise to6

POSV QRSB (y) = (RB ↓Ql
[y]Rd

)(y) (22)

Based on this, γV QRSB may be defined analogously to γB . However, when using
it as an evaluation measure in the hillclimbing heuristic from Section 4.1, the
non-monotonicity of ↓Ql

w.r.t. RB may result in γB∪{a} being lower than γB , a
counterintuitive result. This problem may be mended by replacing (22) by

POSOWA
B (y) = (RB ↓Wl

[y]Rd
)(y) (23)

and defining γOWA
B analogously as before. Because of Proposition 2, applying

the hillclimbing heuristic will always result in increasing evaluation values for
the consecutively selected subsets, making the OWA-based feature selection in-
tuitively sounder.

Because of the definition of ↓Wl
, γB ≤ γOWA

B ; equality holds if Wl = Wmin.

In general, no order relationship exists between γB and γV QRSB , or between

γV QRSB and γOWA
B . On the other hand, under certain conditions it holds that

subsets obtained with the hillclimbing approach using the VQRS- and OWA-
based positive region, are also decision superreducts in terms of the original
definition of positive region in (21), and vice versa. For VQRS, γB = 1 ⇔
γV QRSB = 1 if Ql = Q(α,1) and I satisfies x ≤ y ⇔ I(x, y) = 1 [3]. The following
proposition provides a sufficient and necessary condition for the OWA-based
approach.

6 Note that [3] also introduced an alternative definition of the VQRS-based positive
region which is not considered here because of its excessive computational complex-
ity.
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Proposition 3. Wl = 〈wli〉 is an OWA weight vector such that wln > 0 if and
only if γOWA

B = 1⇔ γB = 1.

4.3 Experimental Evaluation

In order to compare the performance of the traditional fuzzy-rough feature se-
lection approach with those based on VQRS and OWA, we have performed an
experiment on the Spambase dataset7. This dataset has 4601 objects, 57 condi-
tional attributes and two decision classes.

Specifically, we apply the hillclimbing procedure from Section 4.1 using γ,
γV QRS and γOWA; we use I(x, y) = min(1, 1 − x + y) in (5), Ql = Q(0.2,1) in
(8), Wl = WQ(0.2,1)

in (13) and T (x, y) = max(0, x + y − 1) in (20). At each
step in the hillclimbing algorithm, the subsets obtained so far are evaluated by
means of their classification accuracy using the Nearest Neighbour classifier IBk
in the Weka toolkit [8]. As a baseline, we also consider the approach in which
attributes are added in random order.

Fig. 1. Evaluation of feature selection approaches on Spambase data.

The results can be found in Figure 1. The X axis contains the number of
attributes added so far, while the classification accuracy obtained with IBk for
the corresponding attribute subsets can be read on the Y axis. From this figure,
we can see that all fuzzy-rough approaches yield better subsets than those ran-
domly generated, and that VQRS and OWA both outperform the fuzzy-rough
approach along most of the range. Initially, the VQRS approach selects higher-
quality attributes than those obtained with OWA, but roles switch after the
sixteenth attribute. It is also interesting to note that OWA obtains the highest
overall accuracy, viz. 90.59% using 24 attributes.

5 Conclusion and Future Work

In this paper, we have presented a new fuzzy-rough hybridization which relaxes
the traditional property that lower and upper approximations are determined
by means of a single object. As such, it provides an alternative to the previously
introduced VQRS model; from a theoretical point of view, the new model is
better-founded because it respects monotonicity w.r.t. the used fuzzy indiscerni-
bility relation. As another advantage, it adheres more closely to the traditional
fuzzy-rough approach, to which it converges as the andness (resp., orness) of the
OWA-based lower (resp., upper) approximation nears 1. Initial experimenta-
tion has pointed out that the OWA-based model can outperform the traditional
fuzzy-rough approach, and that it can compete with the VQRS approach.

7 Available from http://archive.ics.uci.edu/ml/datasets/Spambase
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More extensive experiments are needed, however, to fully investigate its per-
formance; in particular, in order to study its noise-handling potential, we will
evaluate the quality of subsets obtained on data that is deliberately contami-
nated with noise. Furthermore, we also plan to investigate various construction
methods for the OWA weight vectors, and their optimization in function of the
particular dataset used. Finally, apart from feature selection, the OWA-based
model may also be applied to other data analysis tasks in which fuzzy-rough
methods have been used, such as rule induction and instance selection.
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