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Abstract— Rough set theory provides a useful mathematical
foundation for developing automated computational systems
that can help understand and make use of imperfect knowledge.
Since its introduction, this theory has been successfully utilised
to devise mathematically sound and often, computationally
efficient techniques for addressing problems such as hidden
pattern discovery from data, feature selection and decision
rule generation. Fuzzy-rough set theory improves upon this
by enabling uncertainty and vagueness to be modeled more
effectively. Recently, the value of fuzzy-rough sets for feature
selection and rule induction has been established. However, the
potential of this theory for instance selection has not been
investigated at all. This paper proposes three novel methods
for instance selection based on fuzzy-rough sets. The initial
experimentation demonstrates that the methods can signifi-
cantly reduce the number of instances whilst maintaining high
classification accuracies.

I. INTRODUCTION

Dealing with incomplete or imperfect knowledge is the
core of much research in computational intelligence and
cognitive sciences. Being able to understand and manipulate
such knowledge is of fundamental significance to many theo-
retical developments and practical applications of automation
and computing, especially in the areas of decision analysis,
machine learning and data mining, intelligent control and
pattern recognition.

An additional hurdle faced by many of these techniques
is the sheer volume of data that must be processed and
analysed. This increases the chances that learning algorithms
find spurious patterns that are not valid in general. One
effective way of dealing with this is through the use of
feature selection, where redundant or irrelevant features
are detected and removed before further processing takes
place. However, sometimes the problem encountered is the
prohibitively high number of training instances present or
conflicting information between them. In this case, instance
selection is desired to make the volume of data manageable
and to remove misleading training instances in an effort to
improve learned models from this data.

Over the past ten years, rough set theory (RST [10]) has
become a topic of great interest to researchers and has been
applied to many domains. RST offers an alternative approach
that preserves the underlying semantics of the data while
allowing reasonable generality. It possesses many attributes
that are highly desirable; for example, it requires no param-
eters (eliminating the need for, possibly erroneous, human
input) and it finds a minimal knowledge representation. The
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two main areas of highly successful application for RST
are feature selection and rule induction. However, almost
no research has been carried out into the use of rough
set theory for instance selection. This paper proposes three
approaches to fuzzy-rough instance selection (FRIS). The
main idea behind these approaches is to remove instances
that cause conflicts with other instances as determined by the
fuzzy-rough positive region. By removing these instances,
the quality of training data can be improved and classifier
training time reduced.

The remainder of this paper is structured as follows: in
Section II, the necessary theoretical background is provided
concerning the required rough and fuzzy-rough set concepts.
Section III details the proposed approaches to fuzzy-rough
instance selection. Initial experimental results are provided in
Section IV that demonstrate the potential of the approaches,
and the paper is concluded in Section V.

II. THEORETICAL BACKGROUND

A. Rough Set Analysis

In rough set analysis [10], data is represented as an
information system (X,A), where X = {x1, . . . , xn} and
A = {a1, . . . , am} are finite, non-empty sets of objects
and attributes, respectively. Each a in A corresponds to an
X → Va mapping, in which Va is the value set of a over
X . For every subset B of A, the B-indiscernibility relation1

RB is defined as

RB = {(x, y) ∈ X2 and (∀a ∈ B)(a(x) = a(y))} (1)

Clearly, RB is an equivalence relation. Its equivalence classes
[x]RB

can be used to approximate concepts, i.e., subsets
of the universe X . Given A ⊆ X , its lower and upper
approximation w.r.t. RB are defined by

RB↓A = {x ∈ X|[x]RB
⊆ A} (2)

RB↑A = {x ∈ X|[x]RB
∩A 6= ∅} (3)

A decision system (X,A ∪ {d}) is a special kind of
information system, used in the context of classification, in
which d (d 6∈ A) is a designated attribute called the decision
attribute. Its equivalence classes [x]Rd

are called decision
classes. Given B ⊆ A, the B-positive region POSB contains
those objects from X for which the values of B allow to
predict the decision class unequivocally:

POSB =
⋃
x∈X

RB↓[x]Rd
(4)

1When B = {a}, i.e., B is a singleton, we will write Ra instead of
R{a}
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Indeed, if x ∈ POSB , it means that whenever an object has
the same values as x for the attributes in B, it will also belong
to the same decision class as x. The predictive ability w.r.t.
d of the attributes in B is then measured by the following
value (degree of dependency of d on B):

γB =
|POSB |
|X| (5)

(X,A∪{d}) is called consistent if γA = 1. A subset B of A
is called a decision reduct if it satisfies POSB = POSA, i.e.,
B preserves the decision making power of A, and moreover
it cannot be further reduced, i.e., there exists no proper subset
B′ of B such that POSB′ = POSA. If the latter constraint
is lifted, i.e., B is not necessarily minimal, we call B a
decision superreduct.

B. Rough Instance Selection

Preliminary work on crisp rough set-based instance se-
lection was reported in [2]. Here, the authors developed two
methods for this purpose. The starting point of both methods
is the calculation of a decision reduct from the data set.

For the first method, once a reduct has been calculated,
the positive region is calculated. Any objects not appearing
in the positive region are then removed. One limitation with
this approach is that only inconsistent instances are removed
by this process - all other instances remain. The second
method takes a similar approach, but also considers those
objects appearing in the boundary region (those objects in the
upper approximation but not in the lower approximation) of
decision classes. Objects that appear in the boundary region
are uncertain in that there is not enough information to deter-
mine their class membership with certainty. These objects are
then altered using the Generalized Editing Algorithm [11],
where class labels are changed and suspicious instances are
removed.

C. Fuzzy-rough Sets

Research on the hybridization of fuzzy sets and rough sets
emerged in the early 1990s [6] and has flourished recently
[7]. It has focused predominantly on fuzzifying the formulas
(2) and (3) for lower and upper approximation. In doing
so, the following two guiding principles have been widely
adopted:
• The set A may be generalized to a fuzzy set in X ,

allowing that objects can belong to a given concept (i.e.,
meet its characteristics) to varying degrees.

• Rather than assessing objects’ indiscernibility, we may
measure their approximate equality, represented by a
fuzzy relation R. As a result, objects are categorized
into classes, or granules, with “soft” boundaries based
on their similarity to one another. As such, abrupt
transitions between classes are replaced by gradual ones,
allowing that an element can belong (to varying degrees)
to more than one class.

Typically, we assume that R is at least a fuzzy tolerance
relation. It should be mentioned that many authors impose an

additional requirement of T -transitivity, i.e., given a t-norm
T ,

T (R(x, y), R(y, z)) ≤ R(x, z)

should hold for any x, y and z in X; R is then called a
fuzzy T -equivalence relation, or similarity relation. While T -
equivalence relations naturally extend the transitivity of their
classical counterparts, they may exhibit some undesirable
effects, which were pointed out e.g. in [5].

Assuming that for a qualitative (i.e., nominal) attribute
a, the classical way of discerning objects is used, i.e.,
Ra(x, y) = 1 if a(x) = a(y) and Ra(x, y) = 0 otherwise,
we can define, for any subset B of A, the fuzzy B-
indiscernibility relation by

RB(x, y) = T (Ra(x, y)︸ ︷︷ ︸
a∈B

) (6)

in which T represents a t-norm. It can easily be seen
that if only qualitative attributes (possibly originating from
discretization) are used, then the traditional concept of B-
indiscernibility relation is recovered.

For the lower and upper approximation of a fuzzy set A
in X by means of a fuzzy tolerance relation R, we adopt
the definitions proposed by Radzikowska and Kerre in [12]:
given an implicator I and a t-norm T , they paraphrased
formulas (2) and (3) to define R↓A and R↑A by

(R↓A)(y) = inf
x∈X
I(R(x, y), A(x)) (7)

(R↑A)(y) = sup
x∈X
T (R(x, y), A(x)) (8)

for all y in X .
Using fuzzy B-indiscernibility relations, we can define the

fuzzy B-positive region by, for y in U ,

POSB(y) =

( ⋃
x∈X

RB↓Rdx
)

(y) (9)

This means that the fuzzy positive region is a fuzzy set in
X , to which an object y belongs to the extent that its RB-
foreset is included into at least one of the decision classes.

While formula (9) provides the most faithful way to define
the fuzzy positive region, it is not the most practically useful
one in this case, since the computational complexity is high
(cubic in the number of objects for computing the entire
positive region). Therefore we may opt to replace it by

POS′B(y) = (RB↓Rdy)(y) (10)

which results in smaller positive regions (as shown above),
that are easier to compute (quadratic complexity in the
number of objects for computing the entire positive region).
Equation (9) becomes equation (10) when the decision fea-
ture is crisp [4].

Once we have fixed the fuzzy positive region, we can
define an increasing [0, 1]-valued measure to gauge the
degree of dependency of a subset of features on another
subset of features. For feature selection it is useful to phrase
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this in terms of the dependency of the decision feature on a
subset of the conditional features:

γB =
|POSB |
|POSA| and γ′B =

|POS′B |
|POS′A|

(11)

III. FUZZY-ROUGH INSTANCE SELECTION

This section details three approaches to achieving instance
selection via fuzzy-rough sets. The central notion for all
algorithms is the use of information in the positive region
to determine how useful instances are and whether they can
be removed.

Assume S ⊂ X is a set of training examples. For our
purposes, given a decision system (X,A ∪ {d}), let a be a
quantitative attribute in A∪{d} with range l(a). To express
the approximate equality between two objects w.r.t. a, in this
paper we use the fuzzy relation Ra for x and y in S:

Rαa (x, y) = max
(

0, 1− α |a(x)− a(y)|
l(a)

)
(12)

The parameter α (α ≥ 0) determines the granularity of
Rαa . It should also be noted that equation (12) is not the
only possibility to define the similarity of x and y based
on attribute a. For any subset B of A, the fuzzy B-
indiscernibility relation is:

RαB(x, y) = T (Rαa (x, y)︸ ︷︷ ︸
a∈B

) (13)

In this paper, the lower approximation RαB↓SA of a fuzzy
set A in S by means of a fuzzy relation RαB is defined by,
for y ∈ S:

(RαB↓SA)(y) = inf
x∈S
I(RαB(x, y), A(x)) (14)

We can then define the fuzzy B-positive region POSα,SB

by, for y in S,

POSα,SB (y) = (RαB↓SRαd y)(y) (15)

The corresponding degree of dependency is then defined
by

γα,SB =

∑
y∈S POS

α,S
B (y)

|S| (16)

A. FRIS-I
A simple approach to fuzzy-rough instance selection can

be seen in Fig. 1. The algorithm requires as input the set
of objects that are to be reduced, the parameter α that is
to be used in the fuzzy similarity measure, and an optional
parameter τ that can be used to remove a greater number of
objects if required (see line (3)). Typically, τ should be set
to 1.

The algorithm evaluates the degree of membership of
each object x to the positive region; if this is less than the
threshold, then the object can be removed. When an object
membership is less than 1, this means that there is some
uncertainty as to which class this object truly belongs. If
all such objects are removed, then there is no inconsistency
exhibited by the remaining objects.

FRIS-I(S,α,τ ).
S, the set of objects to be reduced;
α, the granularity parameter;
τ , a selection threshold.

(1) Y ← S
(2) foreach x ∈ S
(3) if (POSα,SA (x) < τ )
(4) Y ← Y − {x}
(5) return Y

Fig. 1. The fuzzy-rough instance selection algorithm I

B. FRIS-II

Although the above approach is quite efficient, it will
remove more objects than is strictly necessary as the removal
of one object might affect the positive region membership
of the remaining objects. For instance, the positive region
membership of an object y might be reduced due to its
proximity to a noisy object x. In this case, the removal
of x will result in y belonging fully to the positive region
and should therefore not be removed in the absence of x.
The removal of an object cannot reduce the positive region
memberships of the remaining objects. Given z, an object to
be removed,

POSα,S∪zB (y) = (RαB↓S∪zRαd y)(y)
= min(min

x∈S
I(RαB(x, y), Rαd y(x)),

I(RαB(z, y), Rαd y(z)))
≤ min

x∈S
I(RαB(x, y), Rαd y(x))

≤ POSα,SB (y)

A better method is to use the positive region information
to select the object with lowest membership for removal and
then recalculate each object’s membership to the positive
region with this object removed. This process can then be
repeated until all objects belong fully. The algorithm can be
seen in Fig. 2.

C. FRIS-III

An alternative method to both FRIS-I and FRIS-II is to
perform a backward elimination of objects. The algorithm
can be found in Fig. 3. Here, we start with the full training
set X and then look for the object x such that γα,X−{x}A
is maximal. That is, the object whose removal expands the
positive region the most. This object is then removed from
the set of instances and the process repeats until the degree
of dependency is 1 (i.e. all objects belong maximally to the
positive region).

This algorithm is the most computationally complex as the
degree of dependency is calculated for each possible removal
of an object.
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FRIS-II(S,α).
S, the set of objects to be reduced;
α, the granularity parameter.

(1) while (true)
(2) z ← ∅, ρz ← 1
(3) foreach x ∈ S
(4) if (POSα,SA (x) < ρz)
(5) z ← x
(6) ρz ← POSα,SA (x)
(7) if (z 6= ∅)
(8) S ← S − {z}
(9) else return S

Fig. 2. The fuzzy-rough instance selection algorithm II

FRIS-III(S,α).
S, the set of objects to be reduced;
α, the granularity parameter.

(1) ρ← γα,SA
(2) while (ρ 6= 1)
(3) z ← ∅, ρz ← 0
(4) foreach x ∈ S
(5) if (γα,S−{x}A > ρz)
(6) z ← x, ρz ← γ

α,S−{x}
A

(7) S ← S − z
(8) ρ← ρz
(9) return S

Fig. 3. The fuzzy-rough instance selection algorithm III

For all algorithms, the fuzzy positive region or degree of
dependency have been used to evaluate the worth of objects.
Similarly, extensions of these concepts can be used for the
same purpose. For example, by replacing these concepts by
their vaguely quantified equivalents [3], the approaches could
be more robust to noise.

IV. EXPERIMENTATION

This section presents the initial experimental evaluation of
the proposed method for the task of instance selection, over
three benchmark datasets from [1] with several classifiers.
The details of the datasets used can be found in Table I.

TABLE I
DATASET CHARACTERISTICS

Dataset Objects Attributes Classes
CLEVELAND 297 13 5

HEART 214 9 2
WINE 178 13 3

The classifiers themselves are obtained from the Weka
toolkit [14], and are evaluated using their default param-

eter settings2. In order to determine the general benefit
of fuzzy-rough instance selection, a variety of classifiers
have been used; namely, a support vector machine-based
method (SMO), a decision tree learner (J48) and an instance-
based learner (IBk). Additionally, two approaches for nearest
neighbor classification are used based on fuzzy-rough sets
(FRNN and VQNN) [9].

The overview of the experimental setup can be seen in
Fig. 4. The procedure first splits the given dataset into
ten cross-validation folds. Each training fold is passed to
the instance selection process where instance selection is
carried out, and the classifier is trained on this reduced fold.
Classification is then carried out using the unreduced test
fold each time. When instance selection is not required, this
process is omitted. Identical initial folds are produced for
runs both with and without instance selection and therefore
the classification results are comparable.

The fuzzy tolerance relation used in this paper requires a
parameter, α, to be selected. As this choice is dependent on
the dataset (and also, to a lesser extent, on the classifiers
themselves) a range of parameter values is evaluated. In
the results presented in the following sections, the tables
show the (average) classifier performance for no instance
selection, followed by the classifier performance with in-
stance selection for a particular α value, and finally the best
classifier performance achieved as a a result of selection. N
is the number of instances removed by the method for that
particular algorithm and α value. In this experimentation,
we used the Łukasiewicz implicator and t-norm as used in
fuzzy-rough feature selection. For FRIS-I, the parameter τ
was set to 1.

A. CLEVELAND dataset

The results for the three methods for the CLEVELAND
dataset can be found in Tables II, III, and IV.

TABLE II
CLEVELAND DATASET: FRIS-I

Alpha FRNN VQNN J48 SMO IBk N
No selection 56.23 57.91 54.55 58.92 54.88 -

0.1 58.25 57.24 54.21 57.24 56.90 77
0.3 58.25 57.24 54.21 57.24 56.90 77
0.5 58.25 57.24 54.21 57.24 56.90 77
0.7 57.91 57.24 53.87 57.58 56.57 73
0.9 57.24 57.58 52.19 57.91 56.57 71
1.1 55.89 56.23 54.88 59.26 55.22 56
1.3 56.90 57.24 54.88 58.92 54.88 46
1.5 57.58 57.24 54.21 59.60 54.55 37
1.7 56.23 57.24 55.22 59.93 54.21 31
1.9 56.57 57.58 54.88 58.59 53.87 24
2.1 56.57 57.24 54.21 58.59 54.55 21
2.3 57.24 57.24 53.87 58.92 55.56 14
2.5 56.90 58.59 55.56 59.60 55.22 9
2.7 55.89 58.25 55.56 58.92 54.55 7
2.9 56.23 57.24 53.20 58.59 54.88 6

Best 58.25 58.59 55.56 59.93 56.90

2All techniques described in this paper have been im-
plemented in Weka. The program can be downloaded from
http://users.aber.ac.uk/rkj/book/programs.php
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Fig. 4. Experimentation overview

TABLE III
CLEVELAND DATASET: FRIS-II

Alpha FRNN VQNN J48 SMO IBk N
No selection 56.23 57.91 54.55 58.92 54.88 -

0.1 56.23 57.24 54.88 57.58 55.89 42
0.3 56.23 57.24 54.88 57.58 55.89 42
0.5 56.23 57.24 54.88 57.58 55.89 42
0.7 56.23 57.58 54.88 56.90 55.56 40
0.9 55.56 57.91 54.21 56.90 53.87 38
1.1 55.22 58.59 57.24 59.26 53.87 30
1.3 55.56 57.58 53.87 58.59 53.54 25
1.5 55.56 57.58 52.86 58.25 53.54 18
1.7 55.22 57.58 54.21 57.58 53.54 15
1.9 55.22 57.58 53.20 57.91 53.54 12
2.1 55.56 57.58 54.21 59.26 54.55 10
2.3 55.89 57.91 55.22 59.26 55.22 7
2.5 55.56 58.25 54.55 59.60 55.22 4
2.7 55.89 58.25 54.88 58.25 54.88 3
2.9 56.23 57.91 54.21 58.92 54.88 3

Best 56.23 58.59 57.24 59.60 55.89

It can be seen that all instance selection methods manage
to retain or improve the performance of all classifiers. For
FRIS-I, α ∈ [0.1, 0.5] results in 77 instances being removed
on average (28% of the original training fold) whilst pre-
serving classification accuracy across all classifiers. FRIS-II
and FRIS-III perform similarly, but these methods do not
remove as many objects. This demonstrates that, for this
dataset, a significant proportion of objects are unnecessary
for constructing robust models. As the number of removed
instances increases, there is not much change in the classifi-
cation accuracies.

B. HEART dataset

The results for the three methods for the HEART dataset
can be found in Tables V, VI, and VII.

All instance selection algorithms improve or maintain the
accuracies resulting from the classifiers trained on the unre-
duced data. FRIS-I benefits the nearest neighbor classifiers
the most, particularly when α is small, resulting in a large
number of instances being removed and higher accuracies.
Again, the extent of instance reduction seen for FRIS-II and
FRIS-III is not as large as for FRIS-I. Overall, the number

TABLE IV
CLEVELAND DATASET: FRIS-III

Alpha FRNN VQNN J48 SMO IBk N
No selection 56.23 57.91 54.55 58.92 54.88 -

0.1 56.23 57.91 53.87 58.92 55.22 38
0.3 56.23 57.91 53.87 58.59 55.22 37
0.5 56.23 57.24 52.53 58.59 55.89 35
0.7 54.55 56.90 54.88 57.24 55.22 34
0.9 54.55 57.58 54.88 58.59 56.23 32
1.1 53.54 58.59 51.52 58.59 55.22 23
1.3 55.56 57.91 54.21 58.59 54.55 19
1.5 54.88 57.24 56.23 58.59 55.22 16
1.7 55.22 57.91 53.87 58.92 55.89 12
1.9 54.88 58.25 55.22 59.93 55.22 7
2.1 54.55 58.59 55.22 57.24 55.22 6
2.3 54.55 57.91 55.22 58.59 55.22 5
2.5 54.55 59.26 55.56 58.59 54.88 3
2.7 53.87 58.92 54.21 58.25 54.55 3
2.9 54.55 58.59 54.55 58.59 54.88 1

Best 56.23 59.26 56.23 59.93 56.23

TABLE V
HEART DATASET: FRIS-I

Alpha FRNN VQNN J48 SMO IBk N
No selection 75.56 82.59 76.30 82.96 75.56 -

0.1 79.63 83.70 80.74 83.70 77.04 39
0.3 79.63 83.70 80.74 83.70 77.04 39
0.5 79.63 83.70 80.74 83.70 77.04 39
0.7 78.89 84.07 79.63 83.33 77.04 35
0.9 78.52 84.07 79.26 82.96 76.67 33
1.1 77.04 83.70 78.89 83.33 76.30 24
1.3 76.67 83.33 77.78 84.07 75.93 15
1.5 76.67 82.59 77.41 83.33 75.93 8
1.7 76.30 82.59 77.78 82.96 75.19 7
1.9 77.04 82.59 77.04 82.59 75.19 4

Best 79.63 84.07 80.74 84.07 77.04

of instances removed is less than that for the CLEVELAND
dataset which suggests that the data contains fewer noisy
instances.

It is interesting to note here that FRIS-I removes around
twice the number of instances the other two algorithms
remove, and yet attains higher accuracies for the classifiers.
It appears to be the case that, for this dataset, it is better to
remove all potentially noisy objects, rather than attempting
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TABLE VI
HEART DATASET: FRIS-II

Alpha FRNN VQNN J48 SMO IBk N
No selection 75.56 82.59 76.30 82.96 75.56 -

0.1 78.15 82.96 75.93 82.22 75.93 18
0.3 78.15 82.96 75.93 82.22 75.93 18
0.5 78.15 82.96 75.93 82.22 75.93 18
0.7 78.15 82.59 77.04 82.22 76.67 16
0.9 78.15 82.59 77.04 82.22 76.67 15
1.1 77.78 82.96 76.30 82.59 76.67 12
1.3 77.78 82.96 75.19 82.96 76.67 8
1.5 77.78 82.59 75.56 82.96 75.93 4
1.7 77.41 82.59 76.30 83.33 75.93 3
1.9 77.04 82.59 76.67 83.33 75.56 2

Best 78.15 82.96 77.04 83.33 76.67

TABLE VII
HEART DATASET: FRIS-III

Alpha FRNN VQNN J48 SMO IBk N
No selection 75.56 82.59 76.30 82.96 75.56 -

0.1 77.78 82.59 76.67 81.85 75.93 15
0.3 77.78 82.59 77.41 81.11 75.93 14
0.5 78.15 82.59 77.41 81.48 76.30 14
0.7 77.41 82.22 77.04 81.85 76.30 14
0.9 77.04 82.96 77.04 81.85 76.67 13
1.1 76.67 82.22 76.30 83.33 75.93 10
1.3 77.41 82.22 75.93 84.44 75.56 6
1.5 78.15 82.22 75.56 83.70 75.56 5
1.7 77.04 82.22 75.93 84.81 75.93 2
1.9 76.67 82.59 75.93 84.07 75.93 1

Best 78.15 82.96 77.41 84.81 76.67

to retain some of them (the approach taken by FRIS-II and
FRIS-III).

C. WINE dataset

The results for the three methods for the WINE dataset
can be found in Tables VIII, IX, and X.

TABLE VIII
WINE DATASET: FRIS-I

Alpha FRNN VQNN J48 SMO IBk N
No selection 97.19 97.75 94.38 98.31 94.94 -

0.4 95.51 65.17 69.10 91.57 93.26 148
0.5 96.63 97.75 80.34 97.19 96.63 105
0.6 94.94 96.63 91.01 97.19 94.94 51
0.7 97.19 98.31 92.13 97.75 95.51 17
0.8 97.19 97.75 93.82 98.31 94.94 8
0.9 97.19 97.75 94.38 98.31 94.94 2

Best 97.19 98.31 94.38 98.31 95.51

For this dataset, FRIS-III performs better in terms of
improving classification accuracy and is more consistent
across the α range. As the accuracies for the unreduced
methods is already high, instance selection can only improve
the performance by a small amount. FRIS-I removes too
many instances for small values of α. For example, when
α = 0.4 on average 91.9% of each training fold is removed.
Surprisingly, this does not affect FRNN and IBk adversely.
For α = 0.5, all classifiers except J48 perform well even
though 65.2% of the training objects have been removed for
each cross-validation iteration.

TABLE IX
WINE DATASET: FRIS-II

Alpha FRNN VQNN J48 SMO IBk N
No selection 97.19 97.75 94.38 98.31 94.94 -

0.4 90.45 93.26 86.52 93.26 88.76 77
0.5 96.07 95.51 83.71 94.94 93.82 39
0.6 96.00 98.31 89.89 96.07 94.94 21
0.7 97.19 97.75 93.26 97.75 94.94 11
0.8 97.19 97.75 93.26 97.75 94.94 4
0.9 97.19 97.75 93.82 98.31 94.94 1

Best 97.19 98.31 93.82 98.31 94.94

TABLE X
WINE DATASET: FRIS-III

Alpha FRNN VQNN J48 SMO IBk N
No selection 97.19 97.75 94.38 98.31 94.94 -

0.4 95.51 95.51 87.64 94.38 94.38 47
0.5 96.63 97.19 89.89 97.19 93.82 23
0.6 98.31 98.31 92.13 97.75 95.51 9
0.7 97.75 97.75 92.13 97.75 94.94 3
0.8 97.19 97.75 94.94 97.75 94.94 2
0.9 97.19 98.31 94.38 98.31 94.94 1

Best 98.31 98.31 94.94 98.31 95.51

V. CONCLUSIONS

This paper has presented three methods for instance se-
lection via fuzzy-rough sets. All methods are based on the
removal of instances that negatively affect the fuzzy positive
region. Instances are removed until there is no uncertainty
amongst them, i.e. all remaining objects belong fully to
the positive region. From the initial experimentation it can
be seen that all selection methods can improve classifier
performance. Overall, FRIS-I appears to be best for removing
the most amount of instances whilst keeping the classifica-
tion accuracy unaffected. This is also the simplest method,
computationally.

There is much potential for further developments in this
area. Throughout the paper, the fuzzy-rough positive region
has been used to gauge the quality of objects. This can
be replaced by existing extensions such as the vaguely
quantified or variable precision fuzzy-rough positive region
that may give a better indication as to object quality through
superior noise tolerance. The computational complexity of
FRIS-III will need to be improved in order for it to be
applied effectively to datasets containing thousands of ob-
jects. Also, this paper has focused solely on the removal
of objects, whereas instance editing (i.e. altering instances
rather than removing them) may provide a better alternative
for improving classifier performance. Finally, there is the
potential for a combined fuzzy-rough instance selection and
feature selection method that would perform both types of
data reduction simultaneously.
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