Fuzzy Answer Set Programming

Davy Van Nieuwenborgh*, Martine De Cock, and Dirk Vermeit

L Vrije Universiteit Brussel, VUB
Dept. of Computer Science
Pleinlaan 2, B-1050 Brussels, Belgium
{dvni euwe, dver nei r }@ub. ac. be
2 Universiteit Gent, UGent
Dept. of Applied Mathematics and Computer Science
Krijgslaan 281 (S9), B-9000 Ghent, Belgium
martine. decock@igent . be

Abstract. In this paper we show how the concepts of answer set progragimi
and fuzzy logic can be succesfully combined into the singlenEwork of fuzzy
answer set programming (FASP). The framework offers the dfdsoth worlds:
from the answer set semantics, it inherits the truly detil@aron-monotonic
reasoning capabilities while, on the other hand, the netfoom fuzzy logic in
the framework allow it to step away from the sharp principlesd in classical
logic, e.g., that something is either completely true or ptately false. As fuzzy
logic gives the user great flexibility regarding the choioe the interpretation
of the notions of negation, conjunction, disjunction anglication, the FASP
framework is highly configurable and can, e.g., be tailocedrty specific area of
application. Finally, the presented framework turns oubéca proper extension
of classical answer set programming, as we show, in cortoasther proposals
in the literature, that there are only minor restrictiong txas to demand on the
fuzzy operations used, in order to be able to retrieve thesial semantics using
FASP.

1 Introduction

The answer set programming (ASP) paradigm [15] has gaineddd popularity in the
last years, due to its truly declarative non-monotonic s&ios, which has been proven
useful in a number of interesting applications, e.g. [21, 12 16]. The idea behind
the answer set semantics, a generalisation of the stablelrsechantics [14], is both
intuitive and elegant. Given a prografhand a candidate answer ggt, one computes
a reduct progranP™ of a simpler type for which a semanti¢®*)" is known. The
reductPM is obtained fromP by taking into account the consequences of accepting
the proposed truth values of the literalsifh. The candidate set/ is then an answer
set just wher{ PM)* = M, i.e. M is “self-producible”.

Although ASP provides a powerful solution for knowledgeresgntation and non-
monotonic reasoning, it has some drawbacks regarding thiggooeability of the se-
mantics w.r.t. the type of application under considergtas witnessed by the large

* Supported by the Flemish Fund for Scientific Research (FW&aweren).

number of extensions, both syntactically and semanticdit have been proposed in
the literature [7, 10, 5, 2]. E.g., m@sASP semantics demand that a solution to a pro-
gram satisfies all the rules. Further, the literals avad@ibthe program, i.e. the building
blocks of rules, can only be true or false (or unknown when coesiders the well-
founded semantics [23]), and classical consistency is atang i.e.c and—a cannot

be true at the same time (or not even “a bit” true at the same)tiklso the interpre-
tation of negation as failure, the construct that gives ASRdn-monotonicity, is very
sharp:nota is true iff a is not true.

Sometimes however, it is impossible to find a solution thiy &atisfies all rules of
the program. In this case, one might still wish to look for luson satisfying the pro-
gram at least to a reasonably high degree. At other timesytmot even be required to
obtain a solution that satisfies a program fully. That is, wnght be more interested in
a solution satisfying the program to a satisfactory highrdegespecially if this solution
comes at a lower cost. Consider the following problem basegihoexample from [2].

Example 1.There are four different kinds of sports that we like to pi@eto some de-
gree. However, only certain combinations of sports leaditdi-dody exercise. Further-
more, some of the sports complement each other, i.e. lesgqaaf one automatically
leads to more practice of the other (rutgs .. r4 in the program below).

Ty lift_weights «— not swim

ro swim «— not lift_weights
r3 run < Not play_ball
Ty play_ball < notrun

r5 : full_body_exercise «— lift_weights, run
re : full_body_exercise < swim, play_ball
r7 «— not full_body_exercise

The two classical answer sets of this program §ligl_body_exercise, lift_weights,
run} and{play_ball, full_body_exercise, swim}. Hence, to achieve a full body exer-
cise, one needs to practice either weight lifting and rugnam ball playing and swim-
ming to the highest degree. However, in addition, we mighbterested to know which
combinations of the four sports we should practice, and tatwhgree, such that an ac-
ceptable degree, e.0.7, of full-body exercise is obtained.

Fuzzy logic is a suitable framework for dealing with degreésuth and satisfac-
tion [26]. In its most general form, fuzzy logic considersamplete latticeC of truth
values on which it redefines the classical operations of ti@gaconjunction, disjunc-
tion and implication; in such a way that they correspond todlassical ones in the top
and bottom elements of the lattice. One of the strengthsz#yflogic regarding these
operations is that a user can freely choose, depending dyphkef application under
consideration, which specific definition she uses for theatpmns.

A combination with fuzzy logic increases the flexibility ahdnce the application
potential of ASP. Such flexibility can be introduced at saVkavels. In the fuzzy answer
set programming (FASP) framework introduced in this paperconsider fuzzy answer
sets, which means that literals can belong to an answer aegidain extent, as opposed

3 Some semantics that deal with preferences among rules [23] @re more flexible.

to either belonging to the answer set or not. In accordamheeliterals in a program
can be true to a certain degree. We relax the definition ofistamy to allow that,
if desired, botha and —a can be true to a certain degree at the same time without
necessarily loosing consistency. Similarly, we allow fanare flexible interpretation
of negation as failure. Crucial to our approach is the notiba satisfaction function,
as it enables us to compute the extent to which a rule is satisfider a given fuzzy
interpretation. The satisfaction function is then usedewetbp the concept of a fuzzy
model. As in traditional ASP, in FASP the fuzzy answer setsiaiple programs, i.e.
programs without negation as failure, coincide with thezfuminimal models. For
programs containing negation as failure, the idea undeglL-reduct is extended to
a technique that allows to bring to surface whether a fuzzgehs indeed supported
by a program, in other words whether it deserves the namezaf/fanswer set.

The rest of the paper is organized as follows. In Section 2iweespme preliminar-
ies on fuzzy logic and answer set programming, while we thice the combination
of both, i.e. fuzzy answer set programming (FASP), in SecBoBefore giving some
comparison with related work in Section 5, we show in Sectidmow the classical
answer set semantics can be retrieved from FASP. Finallgomelude and give some
directions for future research in Section 6.

2 Preliminaries
2.1 Truth Lattices

In this paper, we consider a complete truth lattice, i.e.réigly ordered sef{., <)
such that every subset df has an infimum (greatest lower bound) and a supremum
(least upper bound), which we denoteiny andsup respectively [4]. Such a lattice is
often denoted by, tacitly assuming the ordering .. Furthermore, we us&: and1
to denote respectively the smallest and the greatest etéwied.

The traditional logical operations of negation, conjuatidisjunction, and impli-
cation can be generalized to logical operators acting dh tralues ofL (see e.g. [20]).
A negatoron £ is any decreasing — £ mapping\ satisfying\ (0.) = 1, and
N(1z) = 0. It is called involutive if V(N (z)) = « for all z in £. A triangular
norm 7 on £ is any commutative and associati¥é — £ mapping?Z satisfying
T(1z,2) = z, for all « in L. Moreover we requirel to be increasing in both of
its components. A triangular norm, or t-norm for short, esponds to conjunction. A
triangular conormS on £ is any increasing, commutative and associatife — £
mapping satisfying (0., =) = z, for all z in £. Moreover we requiré to be increas-
ing in both of its components. A triangular conorm, t-condomshort, corresponds to
disjunction. AnimplicatorZ on £ is any£? — £-mapping satisfyin@(0z,0.) = 1.,
andZ(1z,x) = z, for all z in £. Moreover we requir€ to be decreasing in its first,
and increasing in its second component.

The dual of a t-norn?” w.r.t. a negatolV is a t-conormsS defined asS(z,y) =
N(T (N (z),N(y))) forall z andy in £. The mappinds defined byZs rr(z,y) =
S(N(z),y) is an implicator, usually called S-implicator (induced®wand\). On the
other hand, the mappirifr defined byZs(z,y) = sup{\\ € L and 7 (z,\) <. y}
is an implicator, usually called the residual implicatoReimplicator (of7’).

4 In the literature one will also find the notationand T to denoted: and1, respectively.

While the framework we will introduce to perform fuzzy ansvset programming
in Section 3 can be used in combination with any completécétive will restrict
ourselves for the examples in the current paper to the camfalttice([0, 1], <). The
following example presents some fuzzy logical operatorthanlattice.

Example 2.The mappingV; defined asV(xz) = 1 — z for all z in [0, 1] is called the
standard negator. The t-norrg;, 7p, and7w and their dual t-conormsy, Sp, and
Sw w.r.t. the standard negator, are defined as

Tu(x,y) = min(x,y) Sum(z,y) = max(z,y)

Tp(z,y) =z -y Sp(z,y)=z+y—z-y

Tw(x,y) =max(z +y—1,0) Sw(z,y) =min(z +y,1)
for all x andy in [0, 1]. They induce the following implicators (the mappings on the
right are R-implicators while those on the left are S-imalars; for ease of notation the
inducing negataV, has been omitted):

Lifx <y
ISM (CC, y) = max(l -, y) ITM (xvy) = y, else

1, ifx <
Top(w,y)=1—a+a-y In(ey) =9 4 e

Tsy(w,y) =min(l —x +y,1) Ig,(z,y) =min(l —z+y,1)

Every implicator induces a negator by definikgz) = Z(z,0.). The above mentioned
S-implicators induce the standard negatdy, while Zr,, andZz, induce the Godel
negato? A\, defined by\V, (z) = 1 if x = 0 and\,(z) = 0 otherwise.

A fuzzy set inU is aU — L mapping. For fuzzy setd andB in U, A is said to
be included inB, denoted byAd <, B, iff A(u) <, B(u) forall u in U. As usual, we
haveA <, Biff A <, BandnotB <, A.

2.2 Answer Set Programming

We give some preliminaries concerning the answer set séeadot logic programs [3].
A literal is an atonu or a negated atoma. For a set of literals{, we use-X to denote
{=l| 1€ X} wherem—a = a. WhenX N —-X = () we say thatX is consistentAn
extended literals a literal or anaf-literal of the formnot/ wherel is a literal. The latter
form denotes negation as failure. For a set of extendedlg&r, we useY ~ to denote
the set of ordinary literals underlying the naf-literalstini.e.Y~ = {i | notl € Y}.
Further, we useot X to denote the sefnot/ | I € X}. An extended literal is true
w.r.t. X, denotedX |= [if [€ X in casel is ordinary, ora ¢ X if [= nota for some
ordinary literala. AsusualX EYiff VieY - X = 1.

A rule is of the forma «— 5 wheré o U 3 is a finite set of extended literals and
|a] < 1. Thus theheadof a rule is either an extended literal or empty. A finite set of
rules is called dlogic) program The Herbrand base5p of a programP contains all
atoms appearing . The set of all literals that can be formed with the atom$’in
denoted byLit p, is defined byLitp = Bp U —Bp. Similarly, we define the set of all
extended literals that can be formed with the atomBias Elit p = Litp U not Lit p.
Any consistent subseétC Lit p is called aninterpretationof P.

5 This negator is also known in the literature as the Heytingaiwr.
8 For simplicity, we assume that programs have already bemmged.

Arule r = o < [is satisfiedby an interpretatiod, denoted! = r, if I E «
anda # 0, wheneverl = (3, i.e. if r is applicable(=), then it must beapplied
(I &= aUpBanda # 0). Note that this implies that eonstraint i.e. a rule with empty
head(a = 0), can only be satisfied if it is not applicallé (= (3). For a progran®, an
interpretation/ is called amodelof P if Vr € P - I |= r, i.e. I satisfies all rules irP.

It is @ minimal model ofP if there is no model of P such that/ C I.

A simple progranis a program without negation as failure. For simple program
P, we define aranswer sebf P as a minimal model of. On the other hand, for a
programp, i.e. a program containing negation as failure, we definéahaeduct[14]
for P w.r.t. I, denotedP’, as the program consisting of those rdlés\nota~) «
(B\not5~) whereaw — Sisin P, I = not~ and/ = a . Note that all rules in
PT are free from negation as failure, iB! is a simple program. An interpretatidris
then ananswer sebf P iff I is a minimal model of the GL-redud?’.

Example 3.Consider the program

r; i a < notb ro : b« nota
Clearly, both{a} and{b} are answer sets of this program as the GL-rediéts =
{a — } andP*} = {b — } have{a} and{b} respectively as their minimal model.
On the other hand} and{a, b} are not answer sets. For the former interpretation, the
reductP? = {a «— ; b« } has{a, b} as its minimal model which differs frorf,
while the latter has an empty reduct, thus an empty minimalehavhich differs from

{a, b}.

3 Fuzzy Answer Set Programming

Classical ASP, as defined in the previous subsection, ismeseays a very strict frame-
work in its semantics. In particular, an answer set is reglio satisfy all rules of the
program fully. In a more flexible setting, we wish to be ableléal with interpretations
that satisfy rules possibly only to a certain extent. To #ridl, we allow literals to be
true to a degree, as opposed to either being true or not treisuéh, interpretations,
and hence also answer sets, become fuzzy sét# jn

As the high configurability of fuzzy logic can be seen as ongsofnain strengths,
we will adopt this behavior to the FASP framework presentetiis section. Therefore,
we allow a user to choose, in function of the application atchahow the different
classical operations need to be interpreted. More spdgjifiaaiser has to fix a complete
lattice £ first. Then, she has to choose two negafgrsand.V,,, which will be used to
define consistency and the semantics of negation as faéspectively. Further, two
t-norms7. and 7, need to be fixed, respectively used for defining consistemcly a
applicability of rules. Also an implicatdf is needed to obtain the degree of satisfaction
of arule. Finally, an aggregatetis needed that combines all the degrees of satisfaction
of rules into a single truth value denoting the degree in Wiasiduzzy interpretation is
a fuzzy model. For the rest of this paper, we assume, witlomstdf generality, that the
above choices have been made, and we will not repeat theytievein the definitions,
but just use them.

7 As usual,\ denotes set difference.

The first classical notions that need to be tackled are comint and consistency.
In ASP a literal is either true or false; and thus it is either contained ima@rpretation
or not. When botlhand—!/ are contained in an interpretation, it is said to be incdests
In a fuzzy context, a literal can be a bit true, and botrand -/ can be a bit true in a
consistent way, making a modified notion of consistency s&asy.

Definition 1. Let P be a program. Auzzy interpretation I for P is a fuzzy setifLit p,
i.e.al : Litp — L mapping. is calledx-consistent, = € L, iff

Ne(sup T.(I(a),I(-a))) >, x .

a€EBp

Intuitively, the definition ofz-consistency allows a user to choose the point where
the degree of containment of batnd—I[in a fuzzy interpretatiod, makes that inter-
pretation inconsistent. The classical notion of an intetigtion emerges from the above
definition for the latticeC = {0, 12}. In this particular case, an interpretatidns
called1.-consistent iff there does not exist ann Bp such that bot (a) = 1, and
I(ﬁa) = 15.

As fuzzy interpretations only assign truth values to ordiridgerals explicitly, we
need a mechanism to retrieve truth values for naf-litekilsile complementary literals
I and—[are only weakly related to each other usikig 7., and a certaim-consistency
boundary, naf-literalsandnot/ need a tighter connection since, intuitively, a naf-litera
not/ can only be true to the degree that the underlying ordingeydi/ is false, and
vice versa. Hence, we us$é, to extend a fuzzy interpretatiahto cover naf-literals by
definingZ(notl) = A,,(I(1)) for eachl € Litp.

Having fuzzy interpretations angconsistency, we need to redefine the satisfaction
of rules. While a rule in ASP is either satisfied or not, in a enfiexible setting we
should allow a rule to be partially (to a certain degrees$ati. Further, each rule does
not have to be satisfied to the same degree, which is, e.dul isapplications having
preferences among rules. To obtain these degrees, wé&,uaedZ to induce, for a
fuzzy interpretation, a satisfaction functiof_ that assigns a truth value to the bodies
of rules and to the rules themselves. Later on, this satiefatunction will be used, in
combination with the aggregatet, to obtain the degree in which a fuzzy interpretation
is a model of a program.

Definition 2. Let P be a program and lef be a fuzzy interpretation. The induced
satisfaction functiod_ : 274 U P — L is defined by

I(0) =1,
I-({IUB) = To(I(1), 1=(B))
I(< B)=Z(I=(B),0c)
I-(l < B) =Z(1=(B),1(1))

Note that/_({{}) = I(I) andI(notl) = N, (I(1)). Intuitively, I_(s), with s €
P, defines to which degree a rulés satisfied taking into account the truth assignments
of the head and body afin /. To define a fuzzy model, the differeft (s), with s € P,
need to be accumulated in some way. The user defined aggrefjatdhich takes as

input a program and a satisfaction function, will accontptlss job and result in a truth
value denoting the degree in which the fuzzy interpretaficea model ofP. However,
we demand that an aggregator is increasing whenever theaegf satisfaction of the
rules increase.

Definition 3. Let P be a program and lef be anz-consistent fuzzy interpretation.
Then,I is anz-consistentuzzy y-model of P, y € L, iff A(P, I) > y.

Example 4.Consider the lattic&€ = [0, 1] and the program
r; i a < notb re : b+« nota Tg:C<+ a

and consider the fuzzy interpretati6ns = {(a,0.9),(b,0.3),(c,0.2)} and L =
{(a,0.4), (b,0.7), (¢,0.8)}. Both of these fuzzy interpretations areonsistent, inde-
pendently of the choices fav.. and7.. For negation as failure, we use the negator
To compute the satisfaction of the rules, we use the implicas,, . Finally, as an ag-
gregator we used(P, I.) = inf{l_(s) | s € P}, i.e. the weakest rule dominates the
solution.

We haveK|_(r1) = maz(1 — K(notb), K(a)) = maz(1 — Ns(K (b)), K(a)) =
maz(1 — (1 —-0.3),0.9) = 0.9. Similarly, Ki_(r2) = maz(1 - (1 -0.9),0.3) = 0.9
andK_(r3) = maz(1 —0.9,0.2) = 0.2. As a result,K is al-consistend.2-model of
P. On the other hand, one can verify that (r1) = L(r2) = 0.7andL(r3) = 0.8,
yielding thatL is al-consistent.7-model of P.

The above definitions are conservative extensions of clalsprinciples, i.e. the
classical definitions are special cases of the ones prekkate. Hence it is not surpris-
ing that the extensions suffer the same difficulties whenl tisalefine a fuzzy answer
set semantics. For instance, bdth- {(a,0.), (b,02)} andJ = {(a,1.), (b, 1)} are
“perfect” fuzzy interpretations of the prografn < b ; b <+ a} as they both satisfy alll
rules to a maximal degrde:. In traditional ASP, the s€fta, b} is called “unfounded”[23]
and answer sets should be free of such sets. This is achigvetpbsing a minimality
requirement.

Definition 4. Let P be a program. Ar:-consisteny-model)M is anz-consistenmin-
imal fuzzy y-model iff M is <, minimal among allkz-consistent fuzzy-models ofP.

Applied to the examplesand.J above, this results ih <. J, yielding that/ is the
singlel -consistent minimal fuzzy .-model of the two rules.

Example 5.Reconsider the program and the choices for logical oper&itom Exam-
ple 4. One can check that the fuzzy interpretatiddis= {(a,0.9), (b,0.8), (¢, 1)}
andN = {(a,0.9), (b,0.2), (¢, 1)} are bothl-consistent).9-models of P. However,
one can verify thatN= <, M, which fits our intuition as the degree in whidhis
assumed true is overestimatedf. Still, N is not minimal, as one can verify that
S = {(a,0.9),(c,0.9)} is <.-minimaP, i.e. al-consistent minimal fuzzg.9-model
of P.

8 As usual, a fuzzy sef in Litp is denoted aq(l,z) | I(l) = x Al € Litp}, omitting the
literals(7,0,).

9 Note that when another implicator is choséhnot necessarily remains a minimal fuzzy-
model of P. E.g., usingZz,, would makeS only a fuzzy0-model.

While the above minimization process is necessary, it doeget suffice to prevent
unwanted models, as witnessed by the following example.

Example 6.Consider the program
Q< ro 1 b« a,notc

and the fuzzy interpretatiods = {(a,0.9), (b,0.9)} andL = {(a,0.9), (¢,0.9)}. We
make the same choice for the logical operators as in Exampledvaluate the body of

ro We useZ, = 7. One can verify thaf{ and L are both minimal fuzzy.9-models.
However, intuitively L is not acceptable as a good solution as there is no support for
accepting: at degred).9, i.e. there is no applicable rule within the head.

In traditional ASP, the above problem is solved by taking@tereduct which will
remove, forl = {a, c}, the ruler, from the reductP’, because-, is not applicable
due to thenotc literal in its body. Now, the minimal model of this reduct da®ot equal
1, hence, it is rejected as an answer set. Note that the rerabsaiule does not mean
that this rule does not have to be satisfied anymore. On thazcgnin the example
above, rule is removed because it is not applicable under interpretdtibence it is
satisfied by default, independently of the truth valué.of

Note that in traditional ASP, there are two possible scesddr a model to satisfy
a rule of the form/ — §. Either it is applicable{ |=), hencd must assume the truth
valuel, to satisfy the rule, or it is unapplicablé ¢~), hence the rule is satisfied by
default and can assume any truth value from the lattite- {0, 1. }. In the first case,
the truth value of is fully determined by the rule, while in the latter case, thie does
not impose any restrictions on the truth valué,dfence taking it into account does not
influence the result and we can remove the rule.

In FASP, such a removal strategy for naf-literals is notifdlasas such literals may
be true only to a certain degree, making the bodies of sones mgplicable to a certain
degree, which requires that they also need to be applied ¢otailc degree. Hence, as
opposed to either fully determining the truth value of thadef a rule (full informa-
tion), or leaving it completely arbitrary (no informatiqir) FASP a rule may also carry
someinformation that delimits the set of possible truth valueasttcan be assumed by
the head.

Thus, we define for each rule in the program a subset £ such that none of the
values inY lowers the degree of satisfaction of the rule. Next, forerdit! € Litp,
we consider these sels for each rule of the forni < (. By taking the intersection
of these sets, we obtain a range of truth values. Choosingemative truth value for
[within this range does not lower the degrees of satisfaaifdhe rules withl in the
head. However, interpretations that choose the lower satuthe range are called better
supported.

Definition 5. Let P be a program and lef be a fuzzy interpretation. Ttsapportedness
function I, associated with is defined by

L= () {wellZ=(B),y) 2 I-({I} = B)} |

{l}—peP

for eachl € Litp, where, by definition[)# = {0.}. A minimalz-consistent fuzzy
y-model ofP is called anz-consistenfuzzy y-answer set iff we have for each € Litp
thatI(1) = inf(Is(1)).

Example 7.Reconsider Example 6. Clearly;(c) = {0}, yielding thatl is not a fuzzy
0.9-answer set of. On the other hand, one can verify tH&} (a) = K,(b) = [0.9, 1]
andK;(c) = {0}, implying thatK is a fuzzy0.9-answer set oP.

Proposition 1. For a simple programP, I is a minimalz-consistent fuzzy-model of
P iff I is anz-consistent fuzzy-answer set of°.

Example 8.Reconsider Example 1 from the introduction. We are intecesd know
to what degrees we have to practice the various sports satlnhacceptable degree,
e.g.0.7, of full-body exercise is obtained. Since our main concera isatisfactory
degree of full-body exercise, we will use an aggregator giigs more importance to
the constraint rule. An appropriate choice could be an aggregator that onlystake
into account. In this case a fuzzy interpretation is a modehe degree to which it
satisfies;. Of course we also require the model to be minimal and supgpovthich is
where other rules come into play.

Further, we will also us€, = 7y to evaluate the body of rules, and the implicator
T = I, to evaluate the satisfaction of the rules. A fuzzy-answer sef< for the
above program must at least satigfy_(r7) = 0.7. This yields that

min(1 — K (not full_body_ezxercise) +0,1) = 0.7 ,

which implies thatK (not full_body_exercise) = 0.3, and thus, usingV; for nega-
tion as failure, thatX (full_body_exzercise) = 0.7. To have support for the literal, i.e.
inf (K (full_body_ezercise)) = 0.7, one of the two ruless; or r¢ have to be made ap-
plicable to a certain degree, in turn implying that some effthur sports will have to be
exercised in a higher degree than others to achieve thatisaffdegree of applicability
of r5 or 1%, One can verify that

K = {(lift_weights, 0.8), (swim, 0.2), (run,0.7), (play_ball, 0.3),
(full_body_ezercise,0.7)} ,

is a fuzzy0.7-answer set of the above program.

Intuitively, this solution is acceptable as it describesoafiguration where two
sports, which are together in rulg, are assigned a higher degree than there comple-
mentary variants, and due to this choice we have supporufbbbdy exercise up to a
degree 0f).7.

On the other hand, one can check that for the fuzzy interfioeta

L = {(lift-weights, 0.8), (swim, 0.2), (run, 0.3), (play-ball, 0.7),
(full_body_ezercise,0.7)} ,

it turns out thatl; (full _bodyexercise) = [0.3,1] N [0.2,1] = [0.3, 1]. Hence,L is not
a fuzzy0.7-answer set of the program, fitting our intuition.

10 Note that this example also illustrates how the proposedédreork can be used to do fuzzy
diagnostic reasoning. The constraintcan be seen as an encoding of the observatigrand
r¢ represent the system description, whiler2, r3 andr4 provide the explanations.

4 Retrieving Classical Answer Sets

The FASP framework presented in the previous section tuhde a proper gener-
alisation of the classical answer set programming paraaiifinthe notions of fuzzy

logic. First of all, ASP can be retrieved as a special casé&H-by choosing the truth
lattice £ = {0, 1.}

Proposition 2. Consider a progran® and letL be the lattice{0., 1, }. Furthermore
let the aggregatord be such thatd(P, I) = 1. iff I_(s) = 1, for every rules € P.
An interpretation)/ is an answer set aP iff the fuzzy interpretatiorf,,, with f,(1) =
1. 1f 1 € M and fy; (1) = 0. otherwise, is a c-consistent fuzzy.-answer set of.

Note thatl .-consistency is nheeded to forbid (classical) contradigtj@nd the re-
striction to fuzzyl ;-answer sets is mandated by the need to classically salistyies
and have the foundedness property of answer sets.

Example 9.Reconsider the program from Example 3. The empty set is hgtmodel
of this program as it satisfies neither of the rules to degree< = {(a, 1)}, L =
{(b, 12)}, andM = {(a, 1), (b, 1)} arel.-models, but the latter is obviously not
minimal. One can verify thak's(a) = {1} andK,(b) = {0, 1.}, and similarly that
Lg(a) = {0¢, 12} and Ls(b) = {1}, in other words bothK and L are 1-consistent
fuzzy 1l-answer sets.

In the proposition above, no choice f&f., N,,, 7., 7., andZ is specified as all
negators, t-norms and implicators ¢, 1.} coincide. However, when we allow for
intermediate truth values, a choice for logical operat@ens up. Below we argue that
certain choices are more “answer set behaved” than others.

Classical answer sets cannot contain bo#nd —a. If one wants to preserve this
behaviour for fuzzy answer sets, i.e. such thdt:aconsistent fuzzy answer set can
not containe and -« simultaneously, not even to some degréeshould be chosen
with care. E.g., onC = [0, 1], take7. = Tw and consider the fuzzy interpretation
I = {(a,0.4),(—a,0.4)}. Then,7.(I(a),I(—a)) = maz(0.4+ 0.4 —1,0) = 0. For
this t-norm it holds, in general, th&t.(I(a), I(—a)) = 0iff I(a) + I(—a) < 1, which
certainly does not correspond to a classical answer setrgmsiaHowever, there ex-
ist some stronger versions faf. that do not suffer from this problem, i.e. for which
T.(I(a),I(—a)) = 0iff I(a) = 0 or I(-a) = 0. Both 7y, and7p are such t-norms,
and can be used to retrieve fuzzy answer sets with a clagsifalconsistency notion.

Next, we consider the possible choices for the implicatgrdBfinition, an impli-
cator satisfie§(0,,02) = Z(0z,12) =Z(12,12) = 12 andZ(1.,0,) = 0., which
implies that any choice fof is sufficient to retrieve classical answer sets from the
1,-consistent fuzzy -answer sets. However, when intermediate truth valuesare c
sidered, certain choices f@rare more answer set alike, as witnessed by the following
example.

Example 10.Reconsider the program from Example 3 and/let {(a,0.6), (b,0.4)}
be a fuzzy interpretation. When usifig,, , we getJ_(ry) = maz(1 — 0.6,0.6) = 0.6
andJ(rz) = maz(1 — 0.4,0.4) = 0.6, yielding thatJ will be at most a).6-answer

10

set. However, in a classical answer set context this lookswnintuitive as the heads
of both rules are satisfied to exactly the same degrees as it \heir bodies are
applicable, and thus intuitively the rules should be tgtaltisfied. ApplyindZr,, on
the programyields_(r;) = J—(r2) = 1, which fits that intuition.

The implicatorZ,, belongs to the class of R-implicators, for which, in gengtal
holds thatZ(z,y) = 1, wheneverr <, y. All R-implicators in Example 2 satisfy
the residuation principle or adjoint condition, iB(x,y) <. ziff = < Z7(y, z) for
all z, y, andz in L. Note that for such implicators the degree of satisfactiba le
[— (does not go down as long as the truth value of the head is gtbateor equal to
T(I=(l < B),1=(B)). In other words, in this case we obtain a more direct exppessi
for y to be used in Definition 5.

Finally, to preserve classical answer set semantics, amirgtation should be said
to satisfy a program to degrde iff it satisfies all rules of the program to degréeg.
The aggregatodd(P, I-) = inf{l_(s) | s € P} we introduced before satisfies this
condition and can be used to retrieve classical answer sets.

5 Related work

Logic programming in the presence of uncertainty or immieci has received a con-
siderable amount of attention (see e.qg. [1, 9] for overv)eit'gss however interesting to
observe that the well known existing frameworks, includihgse that consider fuzzy
interpretations, hold on to two valued concepts of rulesgattion, model, etc. in the
sense that a fuzzy interpretation satisfies a rule or nas, @ model or not, etc. This
clearly sets them apart from the approach introduced inpidyier.

The enrichment of ASP with concepts from fuzzy logic as welfram the closely
related possibilistic logic [11] has been studied from e@asi angles already. In an-
notated answer set programming [22], a rule is of the fofffi{z;, z2, ..., 2n)} —
Lz}, lf{ze}, ... ln{za} wherel,ly,1s, ..., 1, denote literals andy, zo, ..., z, are
annotation terms that can be understood as truth degreels.eSwle asserts thatis
true at least to degreg(z1, 2o, ..., z,) Whenever; is true at least to degreg (for
1 = 1...n). Because of this early revertment to the two valued casé, zwy logical
operators are needed in this approach.

The approach in [17] adheres closer to ours. A rule of the feré 3 is said to be
satisfied by the interpretation iff (in our notatiof).(a) >, 7 (I($), z). The resid-
uation principle reveals a clear connection with our apphoghen committing to an
R-implicatorZ;: namely that/ satisfies the rule. < 3 according to [17] iff] satisfies
this rule at least to degreein our approach. This is also in accordance with [8] where
the use of adjoint pair€7, Z7) is strongly advocated to preserve important theoretical
results. Being able to impose specific satisfaction requémgs for individual rules is in
general an interesting feature, e.g., when rules and faigimate from different knowl-
edge bases that are not all equally trusted. Note that thibeaasily incorporated in
our approach by choosing a suitable aggregdtor

In a similar way, [25] can be seen as a special case of the Fagkefvork presented
in this paper as [25] commits itself, with limited motivatido very specific choices for

11

the user-selectable operators on the latfite]. Some of these choices are at least
questionable. E.g., using the Godel negatfrfor interpreting naf yields that a rule
a < not b will not be applied in any way althoughis only true to a small degree, e.g.
0.1. Using the standard negataf;, as we do in our examples, this would yield a rule
that is applicable to a degréed, and, if a rule satisfaction of at leds8 is wanted with
e.g.Zs,,, we havemaz(0.1,y) = 0.8, which implies that will be derived at degree
0.8 in a fuzzy answer set.

A possibilistic definite logic program [18] consists of rsil@nnotated with certainty
degrees. These degrees are used to establish a possisititipudion on the universe of
atom sets, from which a possibilistic model is derived. Ththars choose implicitly
for the Godel negator, as they first compute the classicalvansets, and afterwards
compute, for an answer sét the possibility to which each literalis contained inS.

6 Conclusions and future research

There are many ways to increase the expressive power of arsgv@rogramming
(ASP) by enriching it with mechanisms to deal with impremisand uncertainty. In
this paper we presented a general and elegant fuzzificaftid8®, called fuzzy answer
set programming (FASP). The generality is reflected in a loigihfigurability by the
user, which allows the system to be tailored to the appbeoasit hand. Among other
things, the ability to choose an aggregator allows for feitextensions of the seman-
tics, e.g. incorporating rule preferences on fuzzy progranme elegance is due to a
close adherence to both the fuzzy logic and the answer sgtgroning paradigm: as
opposed to other approaches, FASP does not revert soontiwdh@lued case but in-
stead allows to compute the actual degree to which a fuzeygrgtation is an answer
set. Furthermore we have shown that FASP extends the tiadititnswer set semantics.
Clearly, there are a lot of topics that still need to be ingeged, e.g. a fixpoint char-
acterization, the complexity of the semantics, the usespfidction etc., all parametrized
by the choice of the (lattice) operations. In addition, weid to explore natural FASP
applications areas such as “web of trust”, diagnosis, acisidgéon support.

References

[1] T. Alsinet, L. Godo, and S. Sandri. Two formalisms of exded possibilistic logic pro-
gramming with context-dependent fuzzy unification: a corapiae descriptionElectronic
Notes in Theoretical Computer Scienéé(5), 2002.

[2] M. Balduccini and M. Gelfond. Logic programs with cortsiscy-restoring rules. IRro-
ceedings of the International Symposium on Logical Fornaaion of Commonsense Rea-
soning AAAI 2003 Spring Symposium Series, 2003.

[3] C. Baral. Knowledge Representation, Reasoning and Declarativel@mol®olving Cam-
bridge Press, 2003.

[4] G. Birkhoff. Lattice theory. American Mathematical Society Colloquium Publications
25(3), 1967.

[5] G. Brewka. Logic programming with ordered disjunctiomn Proceedings of the 18th
National Conference on Artificial Intelligence and Fountéie Conference on Innovative
Applications of Atrtificial Intelligencepages 100-105. AAAI Press, July 2002.

12

[6] G. Brewka and T. Eiter. Preferred answer sets for extérdgic programs. Artificial

Intelligence 109(1-2):297-356, April 1999.

F. Buccafurri, N. Leone, and P. Rullo. Strong and weakst@ints in disjunctive datalog.

In Proc. of the 4th Intl. Conf. on Logic Programming (LPNMR '9@ages 2—17, 1997.

[8] C.Damasio, J. Medina, and M. Ojeda-Aciego. Sorted radjbint logic programs: termi-
nation results and applicationdournal of Applied Logicpage To appear, 2006.

[9] C. V. Damasio and L. M. Pereira. Sorted monotonic logioggams and their embedding.
In Proc. of the 10th Intl. Conf. on Information Processing andrdgement of Uncertainty
in Knowledge-Based Systems (IPMU-Qg8ges 807—814, 2004.

[10] M. De Vos and D. Vermeir. On the Role of Negation in Choiagic Programs. IrLogic
Programming and Non-Monotonic Reasoning Conference (LRM®), volume 1730 of
LNAI, pages 236-246. Springer, 1999.

[11] D. Dubois and H. Prade. Possibilistic logic: a retragpe and prospective viewFuzzy
Sets and Systemb44(1):3—23, 2004.

[12] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagan@®ntend of the dlv systenAl
Communications12(1-2):99-111, 1999.

[13] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vsptBm# Semantics for Ordered
Logic Programs. InProceedings of the 2nd International Conference on Pritesipof
Knowledge Representation and Reasonpages 208-217. Morgan Kaufmann, 1991.

[14] M. Gelfond and V. Lifschitz. The stable model semanfmslogic programming. InLogic
Programming, Proceedings of the Fifth International Ceafiee and Symposiyrmpages
1070-1080, Seattle, Washington, August 1988. The MIT Press

[15] M. Gelfond and V. Lifschitz. Classical negation in logprograms and disjunctive
databasesNew Generation Computing(3-4):365-386, 1991.

[16] D. N. Juergen Dix, Ugur Kuter. Planning in answer setgpaonming using ordered task
decomposition. IrProc. of the 27th German Annual Conf. on Artificial Intelinge (KI
'03), volume 2821 oL NAI, pages 490-504. Springer, 2003.

[17] C. Mateis. Extending disjunctive logic programming tagorms. InProc. of the 5th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (URSI9) volume 1730 of
LNAI, pages 290-304. Springer, 1999.

[18] P. Nicolas, L. Garcia, and |. Stéphan. Possibilistadte models. IProc. of the 19th Intl.
Joint Conf. on Atrtificial Intelligencepages 248-253, 2005.

[19] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and Barry. An a-prolog deci-
sion support system for the space shuttleThird International Symposium on Practical
Aspects of Declarative Language®lume 1990 oL NCS pages 169-183. Springer, 2001.

[20] V. Novak, I. Perfilieva, and J. MotkoiMathematical Principles of Fuzzy Logi&luwer
Academic Publishers, 1999.

[21] T. Soininen and I. Niemela. Developing a declarativte language for applications in
product configuration. IRroc. of the 1st Intl. Workshop on Practical Aspects of Destige
Languages (PADL '99)\volume 1551 of NCS pages 305-319. Springer, 1999.

[22] U. Straccia. Annotated answer set programmingPric. of the 11th Intl. Conf. on Informa-
tion Processing and Management of Uncertainty in KnowlelBlgsed Systems (IPMU-Q6)
2006.

[23] A.van Gelder, K. A. Ross, and J. S. Schlipf. The wellfidad semantics for general logic
programs.Journal of the Association for Computing MachineB(3):620-650, 1991.

[24] D. Van Nieuwenborgh and D. Vermeir. Preferred answés && ordered logic programs.
Theory and Practice of Logic Programming(1-2):107-167, 2006.

[25] G. Wagner. A logical reconstruction of fuzzy inferernnelatabases and logic programs. In
Proceedings of the International Fuzzy Set Associationd\Moongress (IFSA'97)1997.

[26] L. Zadeh. Fuzzy logic and approximate reasoni@gnthese 3(pages 407—428, 1975.

[7

—

13

