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Summary

When faced with imbalanced data, one is presented with a dataset in which the different classes
are unequally presented. Instances of some classes are found in abundance, while examples
of others are rarely encountered. In this work, our focus is directed to two-class imbalanced
problems, in which one class forms the majority and the other the minority. Traditionally,
the elements of the minority class are labeled as positive and those of the majority class as
negative.

We consider the classification of imbalanced data. A classifier is presented with a training set
of instances, which is used to construct a model to use in the classification of newly presented
elements. When class imbalance is present in the training set, the classifier can be severely
hindered by it, rendering it unable to construct a well-performing classification model. In
particular, the constructed model may unjustifiably favor the majority class and result in
an easy misclassification of positive instances. In real-world applications, e.g. in anomaly
detection [66], the medical domain [79] and microarray data analysis ([83], [126]), the positive
class is usually the class of interest, which motivates the development of techniques overcoming
the challenges posed by data imbalance and ensuring an improvement of the classification
performance.

Several solutions have been proposed in the literature. Among them are the resampling
methods, which modify the dataset in order to obtain a better balance. Two obvious ways to
lessen the class imbalance suggest themselves: one can reduce the size of the majority class
(undersampling) or increase the number of minority elements (oversampling). In the second
approach, additional positive elements are added to the training set by using duplicates of
existing instances or by artificially creating new ones, e.g. by means of interpolation. Some
methods also perform a combination of the above and are denoted as hybrid algorithms. Apart
from the resampling techniques, other approaches to improve the classification of imbalanced
data have been proposed as well, where the focus is directed to the classification process itself.
Examples are cost-sensitive learning and ensemble learning.

In our research, we consider Instance Selection (IS). This is a general preprocessing technique
which reduces the size of the training set before using it in the classification. In this process,
two main goals can be aspired: an increase of the performance of the classifier or a large
reduction in size of the training set. IS methods are distinguished from each other based on
whether they seek to attain one or both of these goals. It has been shown (e.g. [41]) that
the execution of IS on the training set can improve the posterior classification. We want to
verify whether this conclusion also holds when the training set exhibits an imbalance between
classes.
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Our experiments show that the direct application of IS on imbalanced data rarely attains
the aspired results and can often have a detrimental effect on the classification performance.
This does not imply that IS is not suitable in this context, but rather that the existing
methods are not tuned to the imbalanced datasets. As such, we develop a new set of IS
methods, called ISImb, which do take the class imbalance explicitly into account. From our
experimental analysis, we are able to conclude that these methods can once more, like their
counterparts for balanced data, significantly improve the classification of imbalanced datasets.
In the development of the ISImb methods, we mostly focus on the first goal of IS methods,
i.e. the improvement of the classification performance. Nevertheless, we also set up methods
attaining a high average reduction of the training set, while making sure that this does not
lead to a considerable loss in classification performance.

It is worth noting that ISImb does not explicitly fall into one of the categories of the resampling
methods discussed above. It is most closely related to undersampling, since it reduces the
size of the training set and does not create any artificial elements. Nevertheless, the bulk of
the state-of-the-art undersampling techniques only reduce the majority class and leave the
minority elements untouched. ISImb does not impose such a restriction and acts on both
classes. In particular, this allows for the removal of noise from the minority class.

This dissertation is divided in three main parts. Part I presents the preliminaries. In antici-
pation of the experimental study, Chapter 1 recalls the different aspects of the classification
process, including the background of several classifiers, evaluation measures, statistical tests
and validation schemes. In Chapter 2, we discuss the different techniques hinted at above for
dealing with the classification of imbalanced data. We present the theoretical aspects as well
as a considerable number of concrete methods proposed in the literature. Finally, Chapter 3
introduces IS. It presents a detailed taxonomy to distinguish between different algorithms and
bridges the gap to the next part of this work, in which these methods are studied in further
detail.

Part II involves a detailed study of 33 existing IS methods. A description of each original
method is provided, as well as a specification and motivation of the corresponding ISImb
method. This implies that we are working with a complete set of 33 ISImb methods. This
part is divided in five chapters, each of which is dedicated to a particular group of IS methods,
which share certain characteristics. This allows for some modifications to be shared among
them as well.

The results of our experimental study are presented in Part III. Several settings have been
studied, to which the different chapters are dedicated. First, we compare the ISImb methods
to both their corresponding IS methods and the baseline classification without preprocessing
the training set. Chapter 9 discusses the observed differences in great detail. The conclusions
drawn in this chapter relate to the main research question posed in this work, namely whether
IS can improve the classification of imbalanced data. Nevertheless, we also want to verify the
competitiveness of our proposals to the state-of-the-art. The remainder of Part III is dedicated
to this objective.

A widely-used oversampling technique is SMOTE [18]. We want to verify whether an ad-
ditional balancing of the datasets after the application of ISImb can further improve the
classification. The results of these experiments are presented in Chapter 10. In Chapter 11,
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we study the combination of SMOTE with existing IS methods. The inclusion of this setting
is motivated by the popular state-of-the-art technique SMOTE-ENN. The remaining state-of-
the-art resampling methods are compared among each other in Chapter 12. To conclude our
work, we compare all approaches from the previous chapters in Chapter 13, so as to obtain
some general guidelines in the classification of imbalanced data.
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Samenvatting

In een ongebalanceerde dataset zijn de instanties ongelijk verdeeld tussen de klassen. Voor
sommige klassen zijn elementen overvloedig aanwezig, terwijl andere ondervertegenwoordigd
zijn. In dit werk beschouwen we binaire ongebalanceerde problemen, waarbij de dataset
slechts twee klassen bezit. Dit betekent dat de ene klasse als meerderheidsklasse kan worden
beschouwd en de andere als minderheidsklasse. Doorgaans wordt de eerste de negatieve klasse
genoemd en de tweede de positieve.

We behandelen de classificatie van ongebalanceerde data. Een classificatie-algoritme beschikt
over een trainingsverzameling instanties die gebruikt wordt om een model op te stellen voor
de classificatie van nieuwe elementen. Wanneer deze trainingsverzameling ongebalanceerd
is, kan het classificatie-algoritme hier ernstige hinder van ondervinden, waardoor het geen
passend model kan construeren. In het bijzonder is het mogelijk dat het opgestelde model een
ongerechtvaardigd voordeel geeft aan de meerderheidsklasse en makkelijk positieve instanties
verkeerd classificeert. In niet-domeinspecifieke toepassingen, die onder meer gevonden worden
in de detectie van anomalieën [66], het medische domein [79] en de analyse van microarray data
([83], [126]), is de positieve klasse meestal de belangrijkste. Dit motiveert de ontwikkeling van
technieken die de uitdagingen gesteld door de ongebalanceerdheid tussen klassen overwinnen
en daarmee de prestaties van een classificatie-algoritme verbeteren.

Verschillende voorstellen kunnen teruggevonden worden in de literatuur. Een voorbeeld zijn
de resampling methoden, die de dataset aanpassen om een meer gelijke verdeling tussen
de klassen te verkrijgen. Twee opties liggen hierbij voor de hand: men kan de omvang
van de meerderheidsklasse verkleinen (undersampling) of het aantal minderheidselementen
doen toenemen (oversampling). In het tweede geval worden er extra positieve elementen
toegevoegd aan de trainingsverzameling. Deze nieuwe elementen zijn ofwel kopieën van reeds
aanwezige instanties, ofwel worden ze synthetisch gegenereerd, bijvoorbeeld aan de hand van
interpolatie. Sommige methoden voeren een combinatie van beide technieken uit en worden
hybride algoritmen genoemd. Naast de resampling methoden zijn er ook andere technieken
om de classificatie van ongebalanceerde data te verbeteren voorgesteld, waarbij de aandacht
rechtstreeks gericht is op het classificatieproces zelf. Voorbeelden hiervan zijn de kostgevoelige
algoritmen en de ensemble methoden.

In ons onderzoek beschouwen we Instantie Selectie (IS). Dit is een algemene techniek voor
preprocessing, die de omvang van de trainingsverzameling verkleint alvorens deze te gebruiken
in de classificatie. In dit proces kan men twee doelen beogen: betere prestaties van het
classificatie-algoritme of een grote reductie van het aantal trainingselementen. Er wordt een
onderscheid gemaakt tussen IS methoden op basis van welke van deze doelen ze trachten te
bereiken. Er is aangetoond in [41] dat het uitvoeren van IS op de trainingsverzameling de
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classificatie kan verbeteren. Wij willen nagaan of deze conclusie ook geldig is wanneer we
werken met een ongebalanceerde trainingsverzameling.

Uit onze experimenten kunnen we besluiten dat de rechtstreekse toepassing van IS op onge-
balanceerde data zelden de verhoopte resultaten bereikt en zelfs vaak een erg nadelig effect
heeft op het classificatieproces. Dit impliceert niet dat IS niet geschikt is in deze situatie,
maar wel dat de bestaande methoden niet afgestemd zijn op ongebalanceerde datasets. Om
deze reden ontwikkelen we een verzameling van nieuwe IS methoden, ISImb genaamd, die
expliciet rekening houden met de ongelijke verhouding tussen klassen. Onze experimenten
tonen aan dat deze methoden wel aanleiding geven tot een significante verbetering van de
classificatie. Bij het ontwikkelen van de ISImb methoden besteden we de meeste aandacht aan
het eerste doel van IS methoden, namelijk het verbeteren van de performantie in de classi-
ficatie. Desalniettemin stellen we ook methoden voor die tot een hoge gemiddelde reductie
van de trainingsverzameling leiden, waarbij we er voor zorgen dat dit niet leidt tot een groot
performantieverlies.

We merken op dat ISImb niet eenduidig ingedeeld kan worden in één van de categorieën
van de resampling methoden. Het is het nauwst verwant aan undersampling, omdat het de
omvang van de trainingsverzameling verkleint en geen artificiële instanties creëert. Desalniet-
temin verkleint het merendeel van de undersampling methoden enkel de meerderheidsklasse
en hebben zij geen invloed op de minderheidselementen. Deze restrictie wordt niet opgelegd
door ISImb, waardoor deze methoden steeds op beide klassen inwerken. In het bijzonder laat
dit toe om ruis uit de minderheidsklasse te verwijderen.

Dit werk is opgedeeld in drie delen. Deel I herhaalt de nodige concepten die verder ge-
bruikt worden. Met het vooruitzicht op de experimentele studie stelt Hoofdstuk 1 de ver-
schillende aspecten van het classificatieproces voor, met onder meer de achtergrond van ver-
scheidene classificatie-algoritmen, evaluatiematen, statistische testen en validatiemethoden.
Hoofdstuk 2 behandelt de verschillende technieken die hierboven werden aangehaald om om
te gaan met de classificatie van ongebalanceerde data. We bespreken zowel de theoretische
aspecten als een aanzienlijk aantal concrete methoden uit de literatuur. IS wordt gëıntro-
duceerd in Hoofdstuk 3. Hierbij wordt een gedetailleerde taxonomie voorgesteld, die toelaat
om verschillende algoritmen van elkaar te onderscheiden. Hiermee wordt de brug geslagen
naar het volgende deel, waarin deze methoden in verder detail worden bestudeerd.

Deel II omvat een gedetailleerde studie van 33 IS methoden. Elke originele methode wordt
beschreven en de corresponderende ISImb methode wordt gemotiveerd en voorgesteld. Dit
impliceert dat we ook werken met een volledige verzameling van 33 ISImb methoden. Dit
deel is opgedeeld in vijf hoofdstukken, waarin telkens een specifieke groep IS methoden wordt
behandeld. De methoden in een groep hebben bepaalde karakteristieken gemeen, waardoor
sommige aanpassingen ook kunnen worden gedeeld.

De resultaten van onze experimentele studie worden besproken in Deel III. We hebben ver-
scheidene experimentele opstellingen bestudeerd, waaraan de verschillende hoofdstukken zijn
gewijd. In de eerste plaats vergelijken we de ISImb methoden met hun overeenkomstige IS
methoden. Er wordt hierbij ook vergeleken met de classificatie waarbij er geen preprocessing
werd uitgevoerd op de trainingsverzameling. Deze resultaten worden uitgebreid besproken in
Hoofdstuk 9. De conclusies uit dit hoofdstuk hebben betrekking op de voornaamste onder-
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zoeksvraag die in dit werk wordt gesteld, namelijk of IS de classificatie van ongebalanceerde
data kan verbeteren. Desalniettemin willen we ook nagaan of onze voorstellen competitief
zijn met de state-of-the-art. De rest van Deel III behandelt dit onderwerp.

SMOTE [18] is een vaak gebruikte oversampling methode. We willen nagaan of na de toe-
passing van ISImb het uitvoeren van een extra stap, waarin de verzameling gebalanceerd
wordt gemaakt, de classificatie nog verder kan verbeteren. De resultaten van deze experi-
menten worden besproken in Hoofdstuk 10. In Hoofdstuk 11 bestuderen we de combinatie van
SMOTE en bestaande IS methoden, in navolging van de populaire state-of-the-art techniek
SMOTE-ENN. De overige state-of-the-art resampling methoden worden onderling vergeleken
in Hoofdstuk 12. Als afsluiter van ons werk worden alle opstellingen uit de vorige hoofd-
stukken vergeleken in Hoofdstuk 13, zodat algemene richtlijnen voor het classificeren van
ongebalanceerde data kunnen verkregen worden.
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Introduction

Our work concerns the study of the classification of imbalanced data. This chapter serves
as an introduction to the general framework in which our work is situated and presents an
overview of the remainder of this work.

Imbalanced data

Imbalanced datasets present an unequal distribution with regard to the class labels. Several
real-world situations are prone to data imbalance, which motivates the focus directed to it
in this work and in the research domain in general. Examples can be found in e.g. medical
diagnosis [79], with specific examples of the prediction of preterm births [48], cancer research
[65] and the diagnosis of acute appendicitis [70], the identification of credit card fraud [16],
text categorization [29], database marketing [30], anomaly detection [66], microarray data
analysis ([83], [126]) and the classification of protein databases [88]. Three thorough reviews
on dealing with imbalanced data can be found in [55], [71] and [102].

In a two-class imbalance problem, one class can be considered as the majority class (Maj)
and the other as the minority class (Min). Traditionally, the elements of the majority class
are labeled as negative (Neg) and those of the minority class as positive (Pos). The rationale
behind this convention is that the minority elements are considered to correspond to a rare
phenomenon which one aims to detect. In particular, the minority class is usually the class
of interest (e.g. [114]) and examples of it may be hard to obtain (e.g. [71]).

The Imbalance Ratio (IR) is defined as the ratio of the sizes of the majority and minority
classes and plainly expresses how much larger the majority class is compared to the minority
class. For every minority element, the dataset contains IR majority elements. In particular,
the IR of a two-class dataset is given by

IR = |Maj|
|Min|

.

We remark that our work will be restricted to binary problems, where a dataset contains
one minority and one majority class. Naturally, a multi-class dataset can also be considered
as imbalanced, when, as before, it exhibits an unequal distribution of its classes. Such a
situation can present itself in different forms. A dataset can contain one majority class and
several minority classes, one minority class and several majority classes or a combination of
the previous two. A review of multi-class imbalanced classification can be found in e.g. [93].
In [32] and [102], the authors describe several ways to handle generalizations of binary to
multi-class techniques.
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The class imbalance problem

The performance of learning algorithms can be greatly hampered by data imbalance, which
is often referred to as the class imbalance problem, a term we believe to have been coined by
Japkowicz in [61]. The learning task that we focus on, is classification.

A classifier has a training set at its disposal, such that the information contained therein
can be used to build a model to employ in the classification of previously unseen elements.
The classification process may be severely hindered by class imbalance in the training set:
classifiers are often able to obtain a high accuracy on the negative class, but perform poorly
on the positive class.

One reason why some standard classification techniques may not perform as well as expected,
is that they usually assume equal class distributions and equal misclassification costs while
constructing the classification model [102]. As this assumption does not hold when dealing
with an imbalanced dataset, the classifier may not recognize newly presented minority in-
stances, as it was simply unable to appropriately model the minority class from the limited
information it has available on positive elements. The overly large presence of negative el-
ements may lead to a hasty assignment of the negative label to newly presented instances.
An obvious additional stumbling block why standard classification techniques may not per-
form as well as expected, is that the imbalanced class distribution may cause a classifier to
consider small clusters of the minority class as noise, which is not necessarily justified [71].
In Chapter 1, we present a number of widely-used classifiers and go into further detail about
the problems they face due to data imbalance.

Since the positive class is usually the class of interest, the above situation is certainly not
desirable. A traditional example stems from the domain of medical diagnosis, where failing
to diagnose a patient with a life-threatening illness is tragic, even when all healthy patients
are correctly informed of being so. Ideally, a classifier should attain a high accuracy on the
positive class, while not causing a considerable drop in accuracy on the negative class.

Class imbalance has its implications on the evaluation of classification models as well. Many
evaluation measures are also influenced by the imbalance in the datasets, providing mislead-
ing results from which incorrect conclusions may be drawn. In particular, the traditional
predictive accuracy has proven to be unsuitable in this context and should be replaced by
other measures. More detail on this matter will be provided in Chapter 1.

Dealing with the classification of imbalanced data

A variety of approaches has been proposed in the literature to handle class imbalance and to
improve the classification. In Chapter 2, we describe a considerable number of them, all of
which have been included in our experimental study.

Data level solutions, the resampling methods, directly modify the class distribution in the
training set to reduce the degree of imbalance. A distinction is made between undersampling
methods, which remove majority instances from the dataset, and oversampling methods, that
add additional minority elements. A combination of both is found in the hybrid algorithms.
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Alternatively, instead of modifying the data, other techniques explicitly focus on the classifi-
cation process, taking the class imbalance into account in the construction of the classification
model. One example is cost-sensitive learning, where a cost function assigning different mis-
classification costs depending on the class of the misclassified instance is used. Several ensem-
ble methods, combining a number of learners into one main model, have also been developed
specifically for imbalanced data.

Instance selection for imbalanced data

Our own contribution to improving the classification of imbalanced data is in the form of
a number of newly proposed preprocessing methods. We study the application of Instance
Selection (IS) to imbalanced data, a procedure which selects a subset of the available elements
in the training set to build the classification model. A general introduction of IS will be
presented in Chapter 3.

Preprocessing the training set with IS before building the classification model has proven to
yield favorable results on balanced data (e.g. [41]) and we want to verify whether the same
conclusion holds when the training set exhibits a degree of class imbalance. We will show
that IS in its current form faces some problems in this context. An imbalance between classes
can significantly influence the intended operation of an IS method. This would imply that
these methods may not be directly applicable in this situation. To our knowledge, the only IS
method explicitly taking the possibility of imbalance between classes into account is HMNEI
[76]. Nevertheless, we feel IS in general can still prove its worth, provided the methods take
into account the imbalance in the data upon which they are executed.

In Part II, we study 33 IS methods. For each existing method, we develop a modified version,
in order to ensure that it performs as intended on imbalanced datasets and can improve
the posterior classification process. We call this set of new algorithms ISImb methods. An
important objective while making our modifications will be to preserve the intrinsic character
of the method and to not change its original setup too much, but to extend and nuance it.
As such, we feel we can respect the original proposal and can truly call the new methods
modified versions instead of new IS methods altogether.

We stress that there is no prior condition on the classes of the selected elements in the
final preprocessed dataset, meaning that both classes in the dataset can be reduced. The
fact that only a subset of the instances is retained in the training set coincides with the
setup of undersampling methods described above. Nevertheless, while these usually retain
the entire minority class and only reduce the number of majority instances, ISImb acts on
both classes. Furthermore, many existing undersampling methods explicitly aim for a perfect
balance between classes after the undersampling step. Our methods do not have this goal,
which allows for a higher level of flexibility in their execution.

Apart from theoretical work, our contribution also comes in the form of an extensive ex-
perimental study, to which Part III is dedicated. We will cast a wide net and study several
settings, assessing the competitiveness of our methods to both their original forms and a large
number of state-of-the-art techniques handling data imbalance. The main question posed in
this work is whether IS can improve the classification of imbalanced data and we will show
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that our ISImb methods can. They prove to be significantly better than both the original
IS methods and the classification without preprocessing. Comparing our methods with the
state-of-the-art in this domain, we find them to be highly competitive as well.
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1 The classification process

As this work focuses on the classification of imbalanced data, a review of the classification
process itself is in order.

Each element x in the dataset is described by a number of features or attributes and can be
presented as a vector, namely

x = (x1, x2, . . . , xd),

where d is the number of features and xi corresponds to the value that x takes on for the ith
feature. Based on these values, a classifier assigns x to a certain class in the dataset. The
class to which an instance x belongs is represented by its class label l(x).

A distinction is made between three types of features: they can be nominal, continuous or
discrete. Continuous and discrete features take on numerical values, while nominal features do
not. As their names indicate, the values of a continuous feature are drawn from a continuous
range, while those of a discrete attribute can only take on a discrete set of levels. Both discrete
and nominal features take on categorical values, but an order is defined on the values of the
former, while the values of the latter can not be sorted. An example of a continuous feature
could be the height of a person, a discrete feature would be his age in years and a nominal
feature the color of his eyes.

In Section 1.1, we recall three widely-used classifiers and indicate some of the challenges they
may be faced with as a result of data imbalance. In anticipation of the experimental study
conducted in Part III, Sections 1.2 and 1.3 provide the necessary theoretical background of
the various evaluation measures and statistical tests that are used.

1.1 Classifiers

A set of instances, the training set, is provided to the classifier to build a classification model.
Afterward, when classifying a newly presented instance, the classifier uses this model to make
a prediction regarding the class label. In our experimental study, we use three different
classifiers, which are discussed in this section. Additionally, we present some of the challenges
they face due to data imbalance, as discussed in [102].
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Chapter 1. The classification process

1.1.1 k Nearest Neighbor

The k Nearest Neighbor (kNN) classifier (e.g. [23], [24]) classifies a new instance x by first
determining its k nearest neighbors among the stored set of training instances, based on a
given distance measure. In our experiments, we have set k to 1.

The set of candidate neighbors is called the prototype set. When multiple elements are found
at equal distance in determining the ith neighbor, one of them is randomly selected. The
others are used as later neighbors or not at all, e.g. when i = k. Having located these k
elements, the class of x is predicted as the one to which the majority of its neighbors belong.
When there is a tie between multiple classes, one is randomly selected.

To determine the distance between two elements x and y in a dataset T , we use the Euclidean
distance measure defined as

d(x,y) =

√√√√ d∑
i=1
|xi − yi|2

with x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd). When the ith attribute is nominal, taking
the absolute value of the difference is not suitable, as it is simply not well-defined. In such a
situation, the term in the sum is replaced by I(xi 6= yi), where we recall that the indicator
function I(·) evaluates to 1 if the condition expressed by its argument is satisfied and to 0
otherwise.

In imbalanced datasets, the small relative presence of minority instances may result in the
classifier being able to only classify a few instances as positive. The majority of its k neighbors
would need to belong to the positive class before an instance itself is classified as such and it
is more likely that the neighborhood contains a lot of negative elements, merely by the fact
that they outnumber the positive instances in the dataset.

In the limit case k = 1, which is the value used in our experiments, an element is misclassified
when its nearest neighbor belongs to the opposite class. In general, when solely considering
the presence of class skewness and not the specific structure that might exist in a dataset,
minority instances are again more likely to have a nearest neighbor that belongs to the
opposite class, as negative elements are more commonly encountered in the dataset. Other
nearby positive neighbors are not able to cancel out the effect of such a negative neighbor.

1.1.2 Decision trees

The classification model constructed by decision trees (e.g. [34], [91]) is a tree, a graph without
cycles. A decision tree is grown by starting with a single node, the root. This root node
represents the entire set of instances. The construction of the tree is continued by iteratively
splitting nodes. In particular, in each step, it is assessed for each node whether it will be used
as a leaf of the tree or to select an attribute to induce a split. In general, a node is used as a
leaf when it is pure, meaning that it represents instances of only one class. If not, the selection
of the best splitting attribute is based on the information gain or impurity reduction. We
refer the reader to [34] for a description of such measures, but this intuitively entails that
a split is selected such that the resulting tree is deemed the most powerful, i.e. that it best
distinguishes between classes. A split leads to the generation of a number of child nodes, each
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symbolizing a subset of the instances represented by their parent. Figure 1.1 depicts a small
example of a decision tree.

To avoid overfitting, optional pruning can take place, where a further distinction can be
made between pre-pruning and post-pruning (e.g. [9], [38]). Pre-pruning is a process allowing
the construction of the tree to halt prematurely, before all training instances are classified
correctly, i.e. before all leaf nodes are pure. To this end, a non-trivial stopping criterion is
put in place. As a result, it avoids constructing paths that are too specific and reduces the
complexity of the tree. Post-pruning on the other hand allows for the tree to be constructed
in full and afterward removes branches that are considered to not represent general properties
of the learned concept, but specific characteristics of the training set at hand. This can be
achieved by splitting the training set into a growing and validation sample. Based on the
growing sample, a complete tree T is constructed. The validation sample is used to remove
branches from T , such that the classification error on this sample is minimized.

New instances are classified by following the appropriate path from the root node to a leaf.
At each internal node of the tree, the value of an attribute is tested and depending on the
outcome a different branch is chosen as next step in the path constructed so far. The class
label is predicted as the one corresponding to the leaf, which is determined as the class of the
majority of the training instances represented by it.

In the experimental study, we have used the C4.5 implementation from Quinlan [87]. Post-
pruning is applied and each leaf needs to cover at least two of the training instances. Pruning
in C4.5 uses statistical estimates of intervals representing how confident we are that the errors
made on the training set correspond to the true error rate. We use a confidence factor of 0.25.
This value is used by the pruning mechanism to compute a pessimistic upper bound on the
observed error rate. A smaller value corresponds to a more pessimistic estimated error and
generally leads to heavier pruning.

The small size of the minority class in imbalanced datasets can lead to several problems. To
be able to discern minority from majority elements, the tree may grow to be very complex.
When pruning is applied, such specific branches may be removed, as they can be considered
as overfitting, and the resulting leaf could be relabeled as negative. In other situations,
the growing stage of the tree may even be terminated before minority instances are able to
dominate leaves.

1.1.3 Support Vector Machines

In [22], based on earlier work in [105], the authors proposed a novel way to construct a model
to use in the classification of previously unseen elements by means of support vector machines
(SVMs). The elements in the dataset are considered as points in a d-dimensional space,
where d is the number of features. A linear decision boundary is sought to be constructed,
representing the separation between classes in the dataset. In this paragraph, as in the original
proposal, we represent the elements of the dataset in the form

(xi, yi), i = 1, . . . , n

with xi the d-dimensional feature vector of the ith instance, yi its class label and n the number
of instances in the training set. SVMs are defined for binary classification tasks, such that
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A2 ≥ 0
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A3 ∈ {2, 3, 4}
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Figure 1.1: Toy example of a decision tree. The first split was made on the nominal attribute
A1. A2 is a continuous attribute, while A3 is discrete.

we can assume yi ∈ {−1, 1}. Generalizations to multi-class datasets can be constructed by
e.g. combining several SVMs into one model [60].

When the data is linearly separable, i.e. when there exist a vector w and scalar b satisfying,
for i = 1, . . . , n,

w · xi + b ≥ 1 if yi = 1
w · xi + b ≤ −1 if yi = −1, (1.1)

the optimal separating hyperplane

H0 ↔ w · x + b = 0

is determined as the one separating the data with the largest possible margin, which can
be proven to be equivalent to minimizing w·w

2 . An example of this situation is depicted in
Figure 1.2. It is easily seen that the two inequalities in (1.1) can be summarized as

yi(w · xi + b)− 1 ≥ 0, i = 1, . . . , n.

The required minimization of w·w
2 under these constraints gives rise to a quadratic opti-

mization problem with n linear constraints, which can be solved using Lagrange multipliers
(α1, . . . , αn). We refer to the original proposal [22] for more detail on this matter.

Vectors xi satisfying
yi(w · xi + b)− 1 = 0

are called the support vectors. The support vectors are the only elements in the dataset for
which αi > 0 holds.

When the data is not linearly separable, slack variables ξi are introduced, representing un-
avoidable errors made in the classification. The equations (1.1) translate to

yi(w · xi + b) ≥ 1− ξi i = 1, . . . , n
ξi ≥ 0 i = 1, . . . , n. (1.2)

Naturally, the number and severity of the errors should be minimized, resulting in a new
optimization function

w ·w
2 + C

n∑
i=1

ξi,

10



Chapter 1. The classification process

H 0
↔

w ·
x + b

= 0

Figure 1.2: Hyperplane H0 (blue) separating two linearly separable classes of circles and tri-
angles. The support vectors are marked in red.

which needs to be minimized while satisfying the constraints (1.2). The constant C represents
the relative importance of minimizing the classification errors and is a user-defined parameter.

The decision function used by SVMs in the classification of new elements is

f(x) = sign(w · x + b).

It can be shown (see [22]) that the weight vector w of H0 can be entirely determined in terms
of the support vectors, yielding a compact representation of the classification model.

As opposed to constructing the separating hyperplane directly in the input space, we can map
the elements from this d-dimensional space to a higher-dimensional, possible infinite, feature
space by means of a function φ(·). The linear separator is constructed in this new space, in
which linear separability may be obtained. Mapping the separator back to the original space,
a more complex decision boundary is found, which allows for a higher level of flexibility of
the model. In solving the optimization problem, all appearing dot products xi · xj need to
be replaced by the corresponding products φ(xi) · φ(xj). Since this is the only place where
the function φ(·) is used, it should never be calculated explicitly if we have a kernel function
K(·, ·) with the property

K(xi,xj) = φ(xi) · φ(xj)

at our disposal. This is known as the kernel trick. Its use is especially clear when φ(·) maps
the input space to an infinite dimensional space, since the values of K(·, ·) remain scalars even
in this situation. Examples of kernel functions can be found in e.g. [13]. In our experimental
study, we use the SMO implementation [84] with a linear kernel and C = 1.

In [62], the authors hypothesized and concluded from their experimental work that SVMs
may not be as susceptible to class imbalance as other classifiers, since only a small number of
elements are used as support vectors. However, later studies in [2] and [120] still showed that
some challenges may arise. The authors of [120] attributed the observed problems to the fact
that the imbalance in the dataset may be reflected as imbalance in the set of support vectors,
which leads to the decision function assigning newly presented instances to the majority class
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more easily. Furthermore, they stated that due to the imbalance, the positive instances may
be located further away from the ideal boundary compared to the negative instance. As a
result, the learned boundary may be located too close to the positive instances, compared to
the ideal situation, which again makes it more likely for positive instances to be misclassified
as negative.

1.2 Evaluation measures

In this section, we describe the measures that are used to evaluate the performance of the
proposed methods in our experimental study. In Section 1.2.3, we present the subset of these
measures to which our focus is mostly directed, as they are appropriate to use when working
with imbalanced data and most commonly employed in the literature.

A preliminary remark is that the overall accuracy should not be considered as a measure fit to
evaluate the classification of imbalanced data, since it can take on misleadingly high values.
As an example, when classifying all instances as negative in a dataset with IR equal to 9 results
in an accuracy of 90%. Even though this is a high value, the classifier misclassified the entire
positive class, which immediately shines a different light on its performance. This example
motivates the further study of evaluation measures and the inclusion of several measures in
any experimental study.

1.2.1 Evaluation measures based on the confusion matrix

A classifier predicts the class of an element based on the information it has at its disposal,
stemming from the model built using the training set. A discrete classifier explicitly predicts
the class label for an element, while a probabilistic classifier assigns a score to each class.
This value is a measure for the probability that the instance under consideration belongs to
this class or, in other words, for how likely it is deemed that the instance is part of the class.
In this section, our focus is directed to discrete classifiers. We re-encounter probabilistic
classifiers in Section 1.2.2.

We recall that for binary classification problems, the elements of the minority class are usually
denoted as positive and those of the majority class as negative. A discrete classifier predicts
the class label as either positive or negative. A correctly classified positive instance is called
a true positive (TP). Similarly, a true negative (TN) is a negative instance that was correctly
classified as negative. In the remaining cases, a positive instance was either misclassified as
negative, a false negative (FN), or a negative instance was wrongly predicted to be positive,
a false positive (FP).

The confusion matrix presents a summary of this information as in Table 1.1. Based on the
values contained in this matrix, several evaluation measures can be defined. For instance, one
determines the true positive rate (TPR) and true negative rate (TNR) as

TPR = TP

TP + FN
and TNR = TN

TN + FP
.

Similarly, the false positive rate (FPR) and false negative rate (FNR) are defined as

FPR = FP

TN + FP
and FNR = FN

TP + FN
.
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In the remainder of this section, both the definition and interpretation of the most widely
used measures are presented. The total size of the dataset is denoted by n.

Table 1.1: Confusion matrix obtained after classification of a two-class dataset

Actual
Predicted Positive Negative

Positive TP FN
Negative FP TN

For datasets containing Ω (Ω > 2) classes, the above matrix easily generalizes to an Ω × Ω
matrix C, where cij equals the number of elements from class i that was classified as belonging
to class j. This work focuses on two-class problems, but for some of the measures presented
below, we are able to give both the two-class and general multi-class definitions, which we
do for the sake of completeness. Others are only defined for binary classification tasks.
Nevertheless, some generalizations have been proposed in the literature and we refer the
reader to where they can be found.

Accuracy

The accuracy acc of a classifier is defined as the percentage of correctly classified instances.
In general, the accuracy can be calculated as

acc =
∑Ω
i=1 cii
n

,

where the values cii are the diagonal elements of the confusion matrix and Ω is the number
of classes in the dataset.

For binary classification problems, we find

acc = TP + TN

n
= TP + TN

TN + TN + FP + FN
.

Clearly, acc corresponds to the performance of a classifier in a very natural way. Nevertheless,
other evaluation measures have been defined as well, as the accuracy is not always equally
useful, which was motivated by the example given in the beginning of this section.

Precision, recall and F-measure

The three measures described in this section originate from the domain of information retrieval
and are only defined for two-class problems. This means that the confusion matrix takes on
the form presented in Table 1.1 and that we can denote the classes as positive and negative.
We refer the reader to [64], where alternative versions of these measures in a three-class
classification problem are presented.

The recall of a classifier is defined as

r = TP

TP + FN
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and represents the percentage of correctly classified positive instances. It can therefore be
interpreted as the restriction of the accuracy to the positive class. Clearly, r coincides with
the TPR defined above. Another alternative name to denote this measure is sensitivity.

The precision does not compare the correctly classified positive instances to the size of the
positive class, but to the total number of instances that have been classified as positive. It is
given by

p = TP

TP + FP
.

This measure is also called the positive predictive value or confidence. A larger value of p
corresponds to a higher number of correct positive predictions.

Ideally, a classifier has both high recall and high precision, meaning that positive instances
are mostly classified as positive (high recall) and the instances classified as positive mostly
belong to the positive class (high precision). However, this is not always the case and the
F-measure embodies the trade-off between precision and recall. It is defined as the harmonic
mean of precision p and recall r and is therefore calculated as

F = 2 · p · r
p+ r

.

The harmonic mean is a way to represent the average of two values. It tends more strongly
to the smaller of the two and we can therefore interpret high values of the F-measure as
an indication of the classifier attaining high values for both recall and precision, which is a
desirable property.

A more general form, the Fβ-measure, is defined as

Fβ = (1 + β2) · p · r
β2 · p+ r

, β ∈ ]0,+∞[.

The parameter β corresponds to the relative importance of recall over precision, i.e. recall is
considered as β times as relevant as precision by Fβ in evaluating the classification perfor-
mance. It is easily seen that F1 = F .

As a final remark, we note that recall, precision, F-measure and Fβ-measure all solely focus
on the performance of the classifier on the positive class.

Cohen’s kappa

Cohen’s kappa κ was introduced in [21] as a coefficient of agreement between two judges in the
same situation and can be used to measure the agreement between the actual and predicted
classes. By definition, κ accounts for random hits or, using the terminology of the original
proposal, agreement by chance.

In general, when T contains Ω classes, this measure is defined as

κ = n
∑Ω
i=1 cii −

∑Ω
i=1 ci.c.i

n2 −
∑Ω
i=1 ci.c.i

,
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where ci. is the sum of the elements on the ith row of the confusion matrix C, i.e. the
cardinality of class i. Similarly, c.i is the sum of the ith column and represents the number
of elements that was classified as belonging to class i. The values of κ are contained in the
interval [−1, 1]. We interpret κ = 1 as total agreement between reality and prediction and
κ = −1 as total disagreement. The value κ = 0 corresponds to a random level of agreement,
such that the classifier is equivalent to random guessing.

For two-class datasets, this formula could be rewritten by explicitly using the values from the
confusion matrix from Table 1.1 as follows

κ = n(TP + TN)− (TP + FN)(TP + FP )− (TN + FP )(TN + FN)
n2 − (TP + FN)(TP + FP )− (TN + FP )(TN + FN) .

However, since no immediate simplification is apparent form the latter formula, there is no
obvious advantage in writing it in this way.

G-mean

The G-mean or G-measure of a classifier is defined as the geometric mean of TPR and TNR,
i.e.

g =
√
TPR · TNR.

The TPR and TNR are the class-wise accuracies of the classifier and g therefore represents
the balance between the performance on each class. We stress that the performances on
both classes take part in the calculation of this measure, as opposed to recall, precision and
F-measure, which only consider the positive class.

1.2.2 The ROC-curve and AUC

Probabilistic classifiers calculate the probability that the element under consideration belongs
to a class and this for all classes present in the dataset. Once more, we focus on binary
classification problems, where each instance is assigned a probability p+ of belonging to the
positive and a probability p− of belonging to the negative class. To make a final decision
regarding the predicted class label, a threshold θ is put in place. When p+ ≥ θ, i.e. when
the instance is predicted to belong to the positive class with a probability higher than θ, the
instance is classified as positive. As such, for each possible value of this threshold, a discrete
classifier is obtained.

The thresholding method allows for an instance to be classified as positive even when p− >
p+. Additionally, low values of θ may result in a large number of negative instances to
be misclassified as positive, while high values can prevent even actual positive instances to
be classified as positive. Obviously, the trade-off between true positives and false positives
depends on the value of θ and the strength of a classifier is evaluated by how it manages this
situation.

The ROC-curve

A Receiver Operator Characteristics (ROC)-curve models this trade-off between TPR and
FPR. ROC-curves originate from signal detection theory, where they are used to model the
trade-off between hit rates and false alarm rates. A hit can be considered as a true positive and

15



Chapter 1. The classification process

a false alarm as a false positive. The authors of [4] offer a clear explanation of how a signal
detection experiment can be translated to a ROC-curve, where the goal is to discriminate
between ‘noise’ and ‘signal plus noise’, considering the latter as a positive observation. ROC-
curves are widely used in medical diagnosis as well (e.g. [46]).

A curve is constructed in a two-dimensional space, plotting FPR and TPR on the x-axis and
y-axis respectively. We present the construction and interpretation of ROC-curves below and
can refer the reader to [31], which offers a clear and complete description as well. Figure 1.3
portrays an example ROC-curve that could have been obtained after executing a probabilis-
tic classifier on a toy dataset consisting of 20 instances. The accompanying table lists the
computed values for p+.

As was laid out in the previous section, any discrete classifier C allows for the construction of
a confusion matrix. Among other things, the values of TPRC and FPRC can be calculated.
As a result, a discrete classifier corresponds to one point (FPRC , TPRC) in ROC-space.
The point (0,1) corresponds to a perfect separation of the classes and is often denoted as
ROC-heaven.

For a probabilistic classifier, since each threshold θ yields a discrete classifier and one point in
ROC-space, a continuous curve can be obtained by varying the threshold. The curve y = x
corresponds to random guessing, as, for each threshold, the TPR and FPR are found to be
equal, meaning that for elements of both classes it is equally likely to be classified as positive.
Curves tending to the upper left corner correspond to classifiers that are able to discriminate
well between classes. In Figure 1.3, we observe that the classifier is performing better than
random guessing, but does not separate the classes perfectly. This is also apparent from
the table, in which some negative instances are assigned higher values of p+ than positive
elements.

It is important to point out that ROC-curves are insensitive to changes in class distribution,
making it a valid measure to use when working with imbalanced data. As in [31], this
conclusion is drawn from the fact that points of the ROC-curve are calculated using row-wise
ratios from the confusion matrix. The ratio of positive to negative instances corresponds to
the ratio of the row sums. Since the rows are used separately, the ROC-curve does not depend
on the actual class distribution. When both rows of the confusion matrix are used, e.g. in
the calculation of the accuracy, the evaluation measure will be sensitive to skewness in class
distributions.

Area Under the ROC-Curve

The information contained in a ROC-curve can be summarized in a scalar, the Area Under
the ROC-Curve (AUC), which corresponds to the area contained between the curve and
the horizontal axis in the interval [0, 1]. To interpret this measure in a meaningful way, [4]
indicated the close relation between the AUC and the statistics from the Mann-Whitney
and Wilcoxon tests. Both these tests are designed to decide whether one random variable
is stochastically smaller than another. The Mann-Whitney U test was introduced in [75]
as a generalization of the Wilcoxon T statistic [116], dispensing of the requirement that the
number of observed quantities of the two random variables should be equal.
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Class p+ Class p+
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- 0.7 - 0.1
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Figure 1.3: Toy example of the results of a probabilistic classifier and the corresponding ROC-
curve. The table lists the values for p+ obtained by the classifier sorted in de-
scending order, together with the true class of each instance. Both classes have
cardinality 10. On the right, the ROC-curve is presented. The diagonal line
corresponds to a classifier which is randomly assigning classes to instances. The
ROC-curve was constructed following Algorithm 1.

In [52], the focus lies on the use of the ROC-curve and AUC in the evaluation of radiological
imaging systems and the authors show that the AUC represents the probability of correctly
ranking a (diseased, non-diseased) pair, i.e. assigning a higher probability of being diseased
to the diseased subject, and that this is equivalent to the Wilcoxon statistic measuring the
probability of correctly ranking any randomly chosen pair of one diseased and one non-diseased
subject. They also recall that the meaning of the AUC as a result of a signal detection
experiment, by means of the two-alternative forced choice setup in which an observer is
forced to choose between two alternative responses, corresponds to the probability of the
correct identification of ‘noise’ and ‘signal plus noise’ in two presented stimuli, one of each
kind. Translating the above to classification performance, the AUC can be interpreted as the
probability that the classifier assigns a randomly chosen negative instance a lower probability
of belonging to the positive class than a randomly chosen positive instance [31].

The above property has been exploited to introduce a formula to estimate the AUC, without
mention of any threshold or explicit construction of the ROC-curve. In [50], the AUC is
determined as

AUC =
S+ − n+(n++1)

2
n+n−

, (1.3)

where the cardinality of the positive and negative class are given by n+ and n− respectively.
The elements of the datasets are ordered by increasing values of p+ and the index of an
element in this sequence is considered its rank. S+ is defined as the sum of the ranks of the
positive elements. The denominator n+n− equals the total number of pairs consisting of one
positive and one negative element. The enumerator in (1.3) represents the number of such
pairs in which the negative instance has a smaller probability of belonging to the positive
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class than the positive instance. Indeed, when ri is the rank of the ith positive instance, there
are ri− i negative instances with a lower rank and therefore a lower value for p+. The number
of pairs with the desired property can be calculated by summing over the positive instances.
We obtain

n+∑
i=1

(ri − i) =
n+∑
i=1

ri −
n+∑
i=1

i = S+ −
n+(n+ + 1)

2 .

Expression (1.3) calculates the percentage of all possible (positive, negative)-pairs where
the positive instance is deemed more likely to belong to the positive class. As this is an
approximation of the probability that a randomly chosen positive instance is assigned a higher
probability of belonging to the positive class than a randomly chosen negative instance, we
conclude that this value is indeed a valid estimate for the AUC, as an indication of how well
a classifier is able to separate the classes.

An alternative, more explicit, version of this formula is given in [34]. Denoting the positive
class by Pos and the negative class by Neg, we find

AUC =

∑
x∈Pos,y∈Neg

(
I[p+(x) > p+(y)] + 1

2I[p+(x) = p+(y)]
)

n+n−
, (1.4)

where I(·) is the standard indicator function, yielding 1 if the condition expressed by its
argument evaluates to true and 0 otherwise. The value p+(x) corresponds to the probability
p+ assigned to x. The denominator is the same as before, but the enumerator is more
expressive, as it counts the number of times a positive instance was assigned a larger value for
p+. When the same value is assigned to a positive and negative instance, the term receives
only half the weight compared to a situation where the value for the positive instance was
strictly larger. Expression (1.3) does not take into account the possibility of equal values for
p+. Assigning weights 1

2 in (1.4) corresponds to randomly positioning elements with equal
values in the sorted sequence, such that we can expect that in roughly half of the cases the
negative instance was placed before the positive instance.

Finally, in our experiments we follow [31] and calculate the AUC by approximating the contin-
uous ROC-curve by a finite number of points. The coordinates of these points in ROC-space
are taken as false positive and true positive rates obtained by varying the threshold θ of the
probability above which an instance is classified as positive. The curve itself is approximated
by linear interpolation between the calculated points. The AUC can therefore be determined
as the sum of the areas of the successive trapezoids. This method is referred to as the trapezoid
rule and is also described in e.g. [78].

Algorithm 1 presents this procedure. Each value for p+ that has been obtained for an element
in T is used as threshold θ. The different values for θ are considered in decreasing order, since
any instance that is classified as positive for some value θ0, will also be classified as positive
for all lower values. This observation allows for a linear scan of the dataset, provided the
elements have been sorted in an appropriate way in a preliminary step. Several elements may
have been assigned the same probability p+. Therefore, for as long as instances with equal
values for p+ are presented, the threshold does not change and only the values of TP and FP
need to be updated. When a new threshold is encountered, the current TPR and FPR are
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Algorithm 1 Calculation of the AUC
Input: For each instance xi ∈ T , i = 1, . . . , n, the estimated probability pi+ and its true
class l(xi).
Output: The AUC
Tsort ← T sorted by decreasing values of pi+
AUC ← 0
TP ← 0, FP ← 0
pprev ← 0
tprprev ← 0, fprprev ← 0
for i = 1, . . . , n do

if pi+ 6= pprev then
tprnew ← TP

n+

fprnew ← FP
n−

area← (tprprev+tprnew)(fprnew−fprprev)
2

AUC ← AUC + area
tprprev ← tprnew, fprprev ← fprnew
pprev ← pi+

if l(xi) = Pos then
TP ← TP + 1

else
FP ← FP + 1

AUC ← AUC + (tprprev+1)(1−fprprev)
2

return AUC
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calculated, representing a point on the ROC-curve and the area of the trapezoid determined
by the current and previous point is added to the AUC calculated so far. As a reminder, the
area A of a trapezoid with bases b and B and height h is given by

A = (b+B)h
2 .

Figure 1.4 illustrates a step in the procedure, when the area determined by the points (F1, T1)
and (F2, T2) is calculated. The bases of the trapezoid have lengths T1 and T2 and its height
is given by F2− F1. The area is therefore given by

(T1 + T2)(F2− F1)
2 .

In the final step, the ROC-curve is completed by adding the point (1,1) and the area of the
final trapezoid is added to the sum before the AUC is returned.
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Figure 1.4: Illustration of the trapezoid rule

The complexity of Algorithm 1 is O(n logn), which is due to the initial sorting of the dataset.

Discrete classifiers

We remind the reader that our discussion on ROC-curves has so far been limited to proba-
bilistic classifiers. For discrete classifiers, it is not immediately clear how a ROC-curve can
be constructed, since the classification corresponds to a single point in ROC-space. Instead
of the predicted class label, we require a probability that the instance would be classified as
positive. As was noted in [31], we need to look at the inner workings of the method to extract
these probabilities or, in other words, to transform a discrete classifier into a probabilistic one
in a natural way. The classifiers used in our experimental study are kNN, decision trees and
support vector machines and we describe how the required probabilities can be obtained. We
refer to Section 1.1 for a description of the classifiers themselves.
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k Nearest Neighbor

Among the k selected neighbors, elements of both classes may be present. When k+ neighbors
belong to the positive class, we calculate the probability of being assigned to this class as

p+ = k+
k
.

The varying threshold in Algorithm 1 can therefore be interpreted as the number of positive
neighbors required for an instance to be classified as positive itself.

For 1NN, there exists a simple and often used formula, which can be derived from (1.4). Since
k = 1, we know p+ ∈ {0, 1}. By considering the terms in the enumerator of (1.4) separately,
we find ∑

x∈Pos,y∈Neg
I[p+(x) > p+(y)] =

∑
x∈Pos,y∈Neg

I[p+(x) = 1 ∧ p+(y) = 0]

= TP · TN (1.5)

and ∑
x∈Pos,y∈Neg

I[p+(x) = p+(y)] =
∑

x∈Pos,y∈Neg
I[p+(x) = 1 ∧ p+(y) = 1] +

∑
x∈Pos,y∈Neg

I[p+(x) = 0 ∧ p+(y) = 0]

= TP · FP + FN · TN. (1.6)

Combining (1.5) and (1.6) yields

AUC =

∑
x∈Pos,y∈Neg

(
I[p+(x) > p+(y)] + 1

2I[p+(x) = p+(y)]
)

n+n−

=
TP · TN + 1

2(TP · FP + FN · TN)
n+n−

= TP · TN
n+n−

+ 1
2
TP · FP + FN · TN

n+n−

= TPR · TNR+ 1
2(TPR · FPR+ FNR · TNR)

= TPR · (1− FPR) + 1
2[TPR · FPR+ (1− TPR) · (1− FPR)]

= TPR− TPR · FPR+ 1
2(TPR · FPR+ 1− TPR− FPR+ TPR · FPR)

= TPR+ 1
2(1− TPR− FPR)

= TPR− FPR+ 1
2 , (1.7)

where we have used the properties

TNR = 1− FPR and FNR = 1− TPR.
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Expression (1.7) is most commonly used (e.g. in [39] and [71]), but further simplifies to

AUC = TPR− FPR+ 1
2

= TPR− (1− TNR) + 1
2

= TPR+ TNR

2 .

This is the arithmetic mean of the true positive and true negative rates obtained by 1NN.

For higher values of k and the other classifiers described in this section, this formula no longer
holds and the AUC is calculated using Algorithm 1.

Decision trees

The authors of [31] proposed how decision trees can be turned into probabilistic classifiers.
The class label is determined as the most present class in the leaf node at the end of the path
followed by the instance to classify. The proportion of positive instances in this leaf nodes
can immediately be used as p+.

Support vector machines

Classification of an instance t by SVM is executed by evaluating its position relative to the
separating hyperplane

H0 ↔ w · x + b = 0,

i.e. by computing H0(t) = w · t + b. Based on the sign of the output, the instance is classified
as belonging to one of the classes. Probabilities can naturally be derived from the values
H0(t).

Multi-class AUC

We briefly introduce several approaches to define multi-class AUC found in the literature, in
order to show that this measure is not necessarily restricted to binary problems.

In [50], the authors proposed a straightforward generalization of the binary case to the cal-
culation of the AUC in a dataset with Ω classes, Ω > 2. For each pair of classes li and lj ,
the binary AUC is calculated twice, once for each class to be used as positive. When li is
regarded as the positive class, the measure AUC(i, j) can be considered as the probability
that a random instance from class lj is assigned a lower probability of belonging class li than
a randomly selected instance from class li. AUC(j, i) is interpreted in the same way, with
the roles of li and lj reversed. These two measures are combined, by taking their arithmetic
mean, to form

Aij = AUC(i, j) +AUC(j, i)
2 .

The overall multi-class AUC is defined as

AUC = 2
|Ω|(|Ω| − 1)

∑
i<j

Aij .
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The authors of [86] compute the expected AUC by Ω calculations of a binary AUC, each time
considering a different class as positive and the remaining instances in the dataset as negative.
Afterward, these Ω values are aggregated by taking a weighted average, where the weights
are calculated as the class frequency of the reference class, i.e.

AUC =
Ω∑
i=1

|li|
|T |

AUC(i),

with AUC(i) the binary AUC calculated when class li serves as reference class.

Finally, in [33] the authors discuss the extension of the ROC-curve to a surface and of the AUC
to the Volume Under the ROC Surface (VUS), for both discrete and probabilistic classifiers.

1.2.3 Evaluation measures for imbalanced classification

Imbalanced datasets exhibit a skewed class distribution. In the confusion matrix, the class
distribution is represented by the row-wise distribution of elements. As noted in [85] and
Section 1.2.2, when an evaluation measure uses values from both rows, it is inherently sensitive
to the aforementioned skewness. Such measures are not fit to use in the study of imbalanced
classification.

All measures discussed in this section have been included in our experimental study, but
we focus on the geometric mean g and the AUC, which are traditionally used in research
regarding imbalanced data (e.g. in [2], [7], [42], [68], [71]). By adopting the reasoning above,
one could argue that g is again an inappropriate evaluation measure, as elements of both
rows are present in its definition. Nevertheless, this may not be an issue here, as g should
be considered an aggregation of the information contained in the TPR and TNR, both of
which are defined row-wise. It represents the geometric mean of the class-wise accuracies,
given them an equal weight, as opposed to the global accuracy acc, where the majority class
easily dominates the minority class.

1.3 Statistical tests

We conclude this section by a description of the statistical tests which are used to verify the
significance of observed differences in performance. For pairwise comparisons, we use the
Wilcoxon signed-ranks test and for multiple comparisons the Friedman test in combination
with the Holm post-hoc procedure. A more in-depth study of these and many more statistical
tests can be found in e.g. [26]. The statistical tests are conducted at the 5% significance level.

1.3.1 Pairwise comparisons

In order to compare two methods and decide whether or not the differences they exhibit are
statistically significant, we use the Wilcoxon signed-ranks test [116]. This is a non-parametric
test, verifying whether its null hypothesis, that the performance of the two methods does
not differ, can be rejected. Intuitively, if the methods indeed exhibit the same behavior, the
differences in performance on the datasets should be distributed symmetrically around the
median, meaning that the methods do not consistently outperform each other. To verify
whether this assumption is supported by the observations, a ranking method is used. The
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absolute values of the differences in performance between the methods are ranked, such that
the smallest difference is assigned rank 1 and the largest difference is assigned rank n, where
n equals the number of datasets upon which the methods were executed. When a tie between
differences occurs, all are assigned the average of the corresponding ranks. The sum of the
ranks of the positive differences is denoted by R+ and the sum of the ranks of the negative
differences by R−. The ranks of the zero-differences are distributed evenly among R+ and
R−, where one observation is ignored in case the number of zero-differences is odd. The test
statistic T of the Wilcoxon signed-ranks test is defined as the smaller of the two values R+

and R−. When n is larger than 25, which is always the case in our experiments, both R+

and R− and therefore T can be approximated by a normal distribution with mean n(n+1)
4 and

variance n(n+1)(2n+1)
24 .

We report R+, R− and the p-value of this test. A p-value is defined as the probability that,
when the null hypothesis holds, a more extreme observation than the one at hand is obtained.
When the p-value is smaller than the predetermined significance level α, the null hypothesis
is rejected.

1.3.2 Multiple comparisons

Comparing a group of methods is achieved by means of the Friedman test [37]. This non-
parametric test allows to decide whether any statistically significant differences are present
within a group of M methods. The null hypothesis states that no such differences exist or,
more precisely, that the behavior of all methods under consideration is equivalent.

To detect a deviation from the null hypothesis, the methods are ranked. For each dataset,
the best performing method is assigned rank 1, the second best rank 2 and so on. In case of
ties, the average ranks are used. Afterward, the average rank over all datasets is calculated
for each method. If the methods are indeed equivalent, the average ranks should be more or
less the same. Based on the average rankings Ri, the Friedman statistic is defined by

F = 12n
M(M + 1)

(
M∑
i=1

R2
i −

M(M + 1)2

4

)
.

This test statistic follows a chi-square distribution with M − 1 degrees of freedom, when a
sufficient amount of methods and datasets is used. We report the Friedman rankings of all
methods, as well as the p-values returned by the test.

When the Friedman test rejects its null hypothesis, we conclude that statistically significant
differences exist among the methods. However, there is no exact indication where these sig-
nificant differences can be found, as the comparison is executed group-wise and not pairwise.
Therefore, a post-hoc procedure is applied. We use the Holm post-hoc procedure [59], using
the method with the lowest Friedman ranking as control method, meaning that it is compared
with the M − 1 remaining methods.

The unadjusted p-value pi is obtained by the pairwise comparison between the ith method
and the control method. These p-values are be ordered in ascending order, yielding

p1 ≤ p2 ≤ . . . ≤ pM−1
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by renumbering the methods if necessary. The Holm procedure is a step-down approach and
sets out by comparing the first p-value to α

M−1 , where α is the predetermined significance
level. When p1 ≤ α

M−1 , the corresponding null hypothesis is rejected and we conclude that
the difference between the control method and the first method is statistically significant
at the α% significance level. Continuing the procedure, p2 is compared to α

M−2 and the
corresponding null hypothesis is rejected when p2 is smaller than the latter value. When at
some point a null hypothesis can not be rejected, the procedure stops and all remaining null
hypotheses are not rejected either.

Adjusted p-values represent the smallest global significance level at which a particular null
hypothesis within a group of hypotheses would still be rejected. For the Holm post-hoc
procedure, the adjusted p-value for the ith method is given by

pHolm = min[max{(M − j)pj : 1 ≤ j ≤ i}, 1].

These are the values that are reported in the discussion of our experimental results.

1.4 Validation scheme

In the experiments conducted in the remainder of this work, the model performance is mea-
sured by means of 5-fold cross-validation (CV). General K-fold CV [101] is performed by
splitting the dataset into K roughly equal parts. Afterward, K experiments are run. The
construction of the classification model is based on K − 1 folds, while the remaining fold is
used as test set, to evaluate the performance of the model on newly presented elements. The
classification results are aggregated by taking the average values over the K experiments.
When K = |T |, this procedure is called leave-one-out validation.

With respect to 5-fold CV, this implies that five separate experiments are performed and the
reported results are taken as averages of these five runs. The five folds have been constructed
using a stratified approach, guaranteeing a similar imbalance in all folds. Our choice of K = 5
coincides with other experimental studies conducted in this domain (e.g. in [39] and [71]) and
is motivated by the fact that higher values of K may result in a too small absolute size of the
minority class.
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2 Strategies for dealing with imbalanced
classification

Several approaches to handle imbalance in the distribution of classes during classification have
been proposed in the literature. This chapter provides both the theoretical background re-
quired for a sufficient understanding of the different strategies as well as a detailed description
of a number of these methods, all of which have been included in our experimental study.

As a first group of methods, we study data level approaches, which modify the dataset in a
preprocessing step to lessen the class imbalance. Next, we consider cost-sensitive learners,
where the imbalance between classes and the class-dependent difference in misclassification
cost is taken into account in the classification process. Finally, Section 2.3 concerns the
ensemble method EUSBoost.

2.1 Data level

Solutions at the data level modify the class distribution within the dataset in order to obtain
a more favorable balance between classes. These techniques are also referred to as resampling
methods. Their primary objective is balancing the classes in the dataset. Two obvious strate-
gies suggest themselves: the size of the majority class can be decreased or the size of the
minority class can be increased. The first strategy is embodied in undersampling methods,
as discussed in Section 2.1.1. The other option is taken by oversampling techniques, which
are studied in Section 2.1.2. Figure 2.1 illustrates the difference between these approaches.
Methods incorporating both techniques are called hybrid methods and are recalled in Section
2.1.3.

2.1.1 Undersampling

Undersampling methods remove elements from the majority class in order to obtain a better
balance in the data. The decision criteria regarding which and how many majority elements
are removed differ between methods. Some algorithms allow for a degree of or even complete
randomness in this choice, while others use specific heuristics to determine which majority
instances are deemed more suitable for removal.
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Undersampling

Oversampling

Figure 2.1: Undersampling and oversampling of an imbalanced dataset. In these two exam-
ples, a perfect balance between classes is obtained, but not all resampling methods
guarantee this result.

Random Undersampling

Random Undersampling (RUS) [7] attains a perfect balance between classes by randomly
selecting elements of the majority class for elimination.

Tomek Links

A Tomek link (TL) [104] is defined as a pair consisting of one positive and one negative
instance that are located closer to each other than to any other instance in the dataset,
as illustrated in Figure 2.2. There are two possible situations in which two elements form
a Tomek link: either one of them is a noisy instance or they are both located near the
decision boundary. This undersampling method identifies these pairs and removes the negative
instances taking part in them.

Figure 2.2: Illustration of Tomek links. The elements contained in the ellipse form a Tomek
link, as they belong to different classes and are closer to each other than to any
other instance.

Condensed Nearest Neighbor Rule

The Condensed Nearest Neighbor Rule (US-CNN) is similar to the IS method CNN, which
is described in [53] and Section 4.1. The difference between US-CNN and CNN lies in the
initialization procedure: while the IS method initializes the subset S ⊆ T with one random
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Figure 2.3: Examples of negative elements that will be removed by NCL, which are marked
in red. On the left, the negative instance is misclassified by its three nearest
neighbors. On the right, the marked negative elements contribute to the misclas-
sification of a positive element by 3NN.

element of each class, US-CNN uses all minority instances and one randomly selected ma-
jority instance. This implies that all minority instances are automatically contained in the
preprocessed dataset.

One-Sided Selection

One-Sided Selection (OSS) was proposed in [68] and performs two main steps. First, the
undersampling method US-CNN described above is applied to the dataset, yielding a reduced
set S. From S, all negative instances that are part of a Tomek link are removed. As such,
noisy and borderline elements are removed.

In [7], the undersampling method Condensed Nearest Neighbor+Tomek Links (CNN-TL) was
introduced. The authors claimed that OSS is set up in two stages: the first removes negative
elements based on Tomek links using the entire set, the second applies US-CNN. In their
proposal, they reversed this order, motivated by the fact that it is computationally cheaper
to apply TL on a dataset that has already been reduced by US-CNN. As should be clear from
the description above, they were mistaken about the original setup of OSS and we conclude
that CNN-TL and OSS are the same. Nevertheless, to allow for an easy comparison with
other work, the results of OSS will be denoted by ‘CNN-TL/OSS’ in the discussion of the
experiments.

Neighborhood Cleaning Rule

The Neighborhood Cleaning Rule (NCL) focuses more on data cleaning than on any obtained
reduction. The authors of [69] introduced this algorithm for datasets containing more than
two classes, but they still distinguish between a class of interest and the remainder of the data.
As such, the execution of the algorithm basically assumes to be handling a binary problem
and we therefore restrict the description of NCL to its application on two-class datasets. We
refer to the original proposal [69] for the multi-class version. The differences are minor.

The IS method ENN (see [117] and Section 4.6) with k = 3 is used to remove noisy negative
instances from the dataset. In particular, when the majority of the three nearest neighbors of
a negative instance x does not belong to the negative class, x is removed. Positive instances
are left untouched. Furthermore, when a positive instance is misclassified by the 3NN rule,
all negative elements contributing to this misclassification are removed as well. Figure 2.3
provides an example for each situation in which a negative element can be removed.

29



Chapter 2. Strategies for dealing with imbalanced classification

Figure 2.4: Illustration of the execution of CPM. The dataset is clustered, after which only
the centers of the clusters are retained in the dataset.

Class Purity Maximization

In [125], a new clustering method based on the maximization of class purity is developed.
The impurity of a cluster is measured as the proportion of minority instances contained in
it. Mostly homogeneous clusters are considered more pure. The clustering method sets out
by randomly selecting one element from each class to use as centers of the clusters. All
remaining elements are assigned to the cluster defined by the nearest center. The method
is applied recursively on the two resulting clusters for as long as one of the constructed
subclusters has higher class purity than its parent. In this way, the dataset is clustered
into mostly homogeneous clusters. The undersampling method Class Purity Maximization
(CPM) retains the centers of the clusters in the dataset and discards the remaining elements,
as presented in Figure 2.4.

Undersampling based on Clustering

This algorithm, SBC for short, is a cluster-based undersampling method proposed in [123].
Its first step is to apply a clustering method to divide the dataset into C clusters. The
minority class is retained in its entirety, but the majority class is undersampled by selecting
an appropriate number of majority elements from each cluster, based on the imbalance within
the cluster under consideration. For the cluster ci, this number is determined as

ni = m · |Pos| · Imbi∑C
j=1 Imbj

, (2.1)

where m is the requested IR of the final dataset specified by the user. The value Imbi is a
measure for the imbalance in ci and is defined as

Imbi = Neg ∩ ci
Pos ∩ ci

.

This is not the same as the IR of ci, as the negative class is not necessarily the majority class
anymore. Since m, |Pos| and the denominator in (2.1) are constants, the number of selected
instances in a cluster solely depends on its imbalance. In particular, clusters containing a
large number of negative instances compared to the number of positive instances, contribute
more to the negative class in the final dataset. The required negative instances are selected
at random in each cluster.

One downside of this method is that it does not take into account the possibility of homoge-
neous clusters, clusters containing elements of only one class, being formed by the clustering
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method. When a cluster ci consists entirely of negative instances, we find Imbi = +∞ and
the behavior of SBC is not defined for such situations. This is easily shown by the problems
that arise when attempting to determine the values nj , since, if we, for the sake of clarity,
assume ci to be the only cluster with this property, we would find

nj =
{

0 i 6= j

undefined otherwise.

The authors of [123] proposed an easy remedy to this problem in their later work [124]. When
the cluster ci does not contain any minority instances, their number is simply regarded as
one, such that Imbi can always be defined.

No default parameters for SBC were explicitly supplied by its developers, but in our experi-
ments we have used K-means [74] with C = 3 in the initial clustering step and have set m to
1. These values coincide with the ones that were used in the experimental study of [42].

Evolutionary Undersampling

Based on the IS method CHC (see [15] and Section 5.5), the authors of [42] constructed this
evolutionary based undersampling technique. They presented different settings, depending
on whether undersampling was applied to all instances (Global Selection (GS)) or limited to
the instances of the majority class (Majority Selection (MS)).

A taxonomy was presented in which an additional distinction is made between the primary aim
of the undersampling method, namely whether it aspires to attain an optimal balance in the
dataset without loss of classification performance (Evolutionary Balancing Under-Sampling
(EBUS)) or to optimize exactly this performance, where balancing is considered a secondary
objective rather than the main goal (Evolutionary Under-Sampling guided by Classification
Measures (EUSCM)).

The fitness functions differ among the different settings and are described below. Furthermore,
the user is presented with the option to use either the geometric mean g or AUC as evaluation
measure.

EUSCM-methods: two different fitness were proposed, namely

fitness(S) = g and fitness(S) = AUC.

EBUS-GS methods: the fitness functions are

fitness(S) =

g −
∣∣∣1− n+

n−

∣∣∣ · P if n− > 0
g − P if n− = 0

and

fitness(S) =

AUC −
∣∣∣1− n+

n−

∣∣∣ · P if n− > 0
AUC − P if n− = 0,

where n+ and n− are the number of instances present in S belonging to the original minority
and majority class of T respectively. P is a penalization factor, which controls the importance
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of balance, presented by the second term in the functions. The value of P proposed and used
in [42] is 0.2.

EBUS-MS methods: the fitness functions are

fitness(S) =

g −
∣∣∣1− N+

n−

∣∣∣ · P if n− > 0
g − P if n− = 0

(2.2)

and

fitness(S) =

AUC −
∣∣∣1− N+

n−

∣∣∣ · P if n− > 0
AUC − P if n− = 0.

N+ is defined as the total number of original minority instances.

Out of the eight undersampling methods proposed in [42], we have included two in our ex-
perimental study, EUSCM-GS-GM and EBUS-MS-GM. The suffixes GM indicate that the
fitness functions containing g were used.

2.1.2 Oversampling

Oversampling methods produce additional minority elements to increase the overall size of
their class. Synthetic elements are either duplicates of minority elements already present in
the dataset or are constructed by means of interpolation. In the first case, a procedure is put
in place to decide which minority elements are fit for replication. This is either achieved in
a random way or by evaluating certain properties of these elements, such as their relevance
within their class. Noisy elements, for instance, may not constitute ideal candidates for
replication.

When newly constructed elements are introduced in the dataset, existing minority elements
are used as seeds and a procedure is put in place to select another nearby element, such that a
synthetic instance can be constructed by linearly interpolating between the two. This means
that an element is introduced on the line segment connecting the two existing elements. The
new instance is assigned to the positive class.

Oversampling methods constructing synthetic elements can differ from each other in several
ways. Firstly, similar to the selection of minority elements for replication, the selection of seed
minority elements can either be performed randomly or in a more well-advised way. Selecting
the neighbors to use in the interpolation can also be done in various ways. For instance,
some methods ensure that the neighbors also belong to the positive class, while others do
not impose this restriction. Finally, while the interpolation process itself is always linear,
the position of the new element on the line segment may differ. The most straightforward
approach is to introduce the element at a random location between the two endpoints. Some
methods use a more involved procedure, wherein a more appropriate location is determined
following a careful assessment of the characteristics of the endpoints.

Random Oversampling

Similar to RUS, Random Oversampling (ROS), also introduced in [7], balances the class
distribution by randomly selecting minority elements for replication. All constructed elements
are duplicates of existing instances.
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SMOTE

The Synthetic Minority Oversampling TEchnique (SMOTE) was introduced in [18] and has
been widely used ever since. To obtain a balance between classes by oversampling the minority
class, new minority elements must somehow be created. As we saw before, a straightforward
approach is to add duplicates of existing elements to the dataset. This causes minority regions
to be more easily identifiable, but also to be more specific, since a larger weight is assigned
to the replicated minority elements.

Keeping this in mind, SMOTE does not use duplicates of original instances in the new dataset,
but rather constructs synthetic elements by means of interpolation. As a result, the decision
region of the minority class is made more general instead of more specific. For each minority
instance x, its k nearest neighbors in the dataset are determined. A synthetic element s is
created by selecting one of these neighbors and randomly introducing s on the line segment
between x and the selected neighbor. We note that this neighbor may belong to either the
minority or majority class. An example of the construction of a synthetic element is given
in Figure 2.5. Traditionally, k = 5 is used and we follow this approach in our experimental
study. Additionally, we ensure that a perfect balance between classes is always obtained in
the final preprocessed dataset.

Synthetic element

Figure 2.5: Illustration of the construction of artificial elements by SMOTE.

Several authors (e.g. [12], [89], [100]) have pointed out that SMOTE may suffer from over-
generalization of the minority class, as its boundary may be extended in such a way that it
spreads into the majority class. A number of modified versions have been proposed to tackle
this problem and are presented in the remainder of this chapter.

Safe-level-SMOTE

Safe-level-SMOTE [12] is a modification of SMOTE that performs the interpolation in the
construction of synthetic instances differently. SMOTE introduces synthetic minority ele-
ments as a random point on the line segment between an original minority instance and one
of its nearest neighbors. The authors of [12] noted that this may lead to overgeneralization
of the minority class. Safe-level-SMOTE reduces the random aspect by first determining the
safe level (sl) of the instances used in the interpolation. The safe level of x is defined as the
number of positive instances among its k nearest neighbors, where we have used k = 5 as
we did for SMOTE. Instances attaining small values for sl(·) are interpreted as noise, while
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high values are deemed an indication of safe regions, i.e. containing several minority elements.
Synthetic instances are constructed such that they are located more closely to safe elements.

We present a schematic version of Safe-level-SMOTE below. For each element x ∈ Pos at
most one synthetic element s is constructed, by performing the following steps:

1. Select y as one of the k nearest neighbors of x.

2. Calculate sl(x) and sl(y).

3. If both sl(x) and sl(y) equal 0, we do not generate a synthetic instance.

4. If sl(y) = 0 and sl(x) 6= 0, the constructed instance is a duplicate of x.

5. In all other cases, we consider the value ratio = sl(x)
sl(y) :

• If ratio = 1, set
s = (1− w) · x + w · y, w ∈ [0, 1].

• If ratio > 1, x is considered safer as y. We set

s = (1− w) · x + w · y, w ∈ [0, 1
ratio

].

• If ratio < 1, y is considered safer as x. We set

s = (1− w) · x + w · y, w ∈ [1− ratio, 1].

The values of w in step 5 are chosen at random in the appropriate intervals.

Borderline-SMOTE

Like Safe-level-SMOTE, Borderline-SMOTE [49] is similar to SMOTE, but some aspects have
been modified. Not all minority instances are allowed to explicitly contribute to the generation
of synthetic elements. Borderline-SMOTE only uses positive instances located near the class
boundary, as these are more prone to misclassification and should receive special attention.
Borderline positive instances are defined as having at least m

2 negative instances among their
m nearest neighbors in the dataset, where m is an additional parameter of the method. These
are the instances that are used to generate the new positive elements. However, when all m
nearest neighbors of a positive instance x belong to the negative class, x is considered as noise
and is not used. Synthetic elements are generated between borderline positive instances and
randomly selected elements among their k nearest neighbors of the positive class.

The above method is referred to by its creators as Borderline-SMOTE1. They also introduced
Borderline-SMOTE2, which only differs from the former version in that, for each borderline
positive instance x, one of the synthetic elements is constructed by interpolating between x
and its nearest neighbor of the negative class. It is ensured that the constructed element s is
located nearer to x than to the negative neighbor y by using a random weight between 0 and
0.5 in the interpolation, i.e.

s = (1− w) · x + w · y, w ∈ [0, 0.5].

In our experiments, we used m = 3 and k = 5 for both Borderline-SMOTE1 and Borderline-
SMOTE2.
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MWMOTE

The Majority Weighted Minority Oversampling TEchnique (MWMOTE) is introduced in
[6], as another modification of SMOTE. Its goal is to generate useful synthetic minority
instances by determining carefully which original minority elements are appropriate to use
in the generation of new elements. The selection procedure of the neighbors used in the
interpolation process also differs from the one applied by SMOTE.

The first stage of the algorithm consists of selecting a subset of minority elements that are
deemed hard-to-learn. Such instances are located near boundaries between classes and are de-
noted as informative in [6]. To identify the set Simin containing these instances, the algorithm
performs the following steps:

1. The minority class is reduced to elements containing at least one other minority instance
among their k1 nearest neighbors. This set is denoted as Sminf . The remaining minority
elements have only majority neighbors and are considered to be noise.

2. For each instance in Sminf , its k2 nearest majority neighbors are determined. The
selected majority elements are located near the boundary of the majority class. They
are combined to form the set Smaj .

3. For each instance in Smaj , its k3 nearest minority neighbors are located. The final set
Simin of informative minority instances is comprised of all minority elements that acted
as one of the nearest neighbors in this step.

Secondly, each selected minority instance in Simin is assigned a selection weight Sw(·) based
on its relevance in the dataset. This weight is used in the final construction of new elements.
A large value suggests that the corresponding element contains useful information and it
should have a higher probability of being used in the generation of synthetic elements. The
authors of [6] made the following three observations:

1. Elements that are located near the decision boundary contain more useful information
compared to those further away and should therefore be assigned a larger weight.

2. Minority elements contained in a sparse cluster should be considered as more important
than those originating from more dense regions. A higher number of synthetic elements
is needed to resolve the within-class imbalance in sparse clusters.

3. Minority elements that are located near a dense majority cluster provide more informa-
tion compared to ones located near sparse majority clusters.

The set Smaj constructed in the first phase is used to model the above observations by means
of two newly defined measures, the closeness factor Cf (·, ·) and the density factor Df (·, ·).
The closeness and density factors are combined to form the information weight, defined as

I(y,x) = Cf (y,x) ·Df (y,x),

where the element y is taken from the set Smaj and x is one of the informative minority
elements.
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The closeness factor is given by

Cf (y,x) =
f
(

1
dn(y,x)

)
Cf (th) · CMAX,

where dn(y,x) is the normalized Euclidean distance between these two elements, CMAX and
Cf (th) are user-defined parameters and the function f(·) is a cut-off function defined as

f(a) =
{
a if a ≤ Cf (th)
Cf (th) otherwise.

The density factor is computed by normalizing the closeness factor, i.e.

Df (y,x) = Cf (y,x)∑
z∈Smin

Cf (y, z) .

The final selection weight of an element x ∈ Simin is calculated as

Sw(x) =
∑

y∈Smaj

I(y,x)

and we obtain the selection probability Sp(x) by normalizing this value, i.e.

Sp(x) = Sw(x)∑
y∈Simin

Sw(y) .

Before the final construction of new minority elements takes place, a clustering method is
applied to the complete set Pos of positive instances. An average-linkage bottom-up approach
is used, by consecutively merging the two nearest clusters until the remaining clusters are
considered to be distant enough. The distance between two clusters is determined by averaging
all pairwise distances between their elements. The clustering process halts when the distance
between the closest pair of clusters is larger than a predetermined threshold Th. This threshold
is calculated beforehand by multiplying the average distance davg between elements in Sminf
with a fixed value Cp. The set Sminf is used instead of Pos in the calculation of the average
distance, which [6] motivated by the fact that Sminf corresponds to Pos after noise removal
and that noisy instances should not influence the distance calculation.

In order to construct synthetic minority elements, instances x of Simin are used as seeds.
They are chosen according to the selection probabilities Sp(·). As opposed to SMOTE, the
neighbor y used in the interpolation is not chosen randomly among the k nearest neighbors
of x, but rather as a random element residing in the same cluster as x. As the clustering
algorithm was only applied to Pos, this implies that y is also a positive instance. A synthetic
instance is introduced at a random location on the line segment between x and y.

We have opted to use the same parameter values as the original proposal [6], i.e. k1 = 5,
k2 = 3, k3 = |Pos|

2 , Cf (th) = 5, CMAX = 2 and Cp = 3. The number of synthetic minority
elements can also be specified by the user and was set to 200% of the size of the original
minority class in [6].
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SMOTE ENN

Figure 2.6: Illustration of the execution of SMOTE-ENN. The method consists of two stages:
it oversamples the dataset by means of SMOTE and cleans the resulting set by
ENN.

2.1.3 Hybrid methods

The third group of resampling methods are hybrid versions of the previous two. Often, they
combine an initial step of oversampling with posterior data cleaning. The oversampling step
usually results in an intermediate dataset which is perfectly balanced. When applying the
data cleaning, it can either be executed on the entire balanced set or be restricted to e.g. the
set of newly generated minority elements.

Some methods interweave the over- and undersampling steps, generating additional minority
elements and reducing the majority class at the same time. Heuristics are used to decide
which minority instances are fit to use in the generation of new elements, that may either be
duplicates of existing instances or newly constructed elements by means of interpolation. The
removal of majority instances is also based on specific criteria, which can take into account
the effect such a removal has on one or both of the classes in the dataset.

SMOTE-ENN

This method was introduced in [7]. In a first stage, the dataset is perfectly balanced by the
application of SMOTE. Afterward, the resulting dataset is cleaned by means of the Edited
Nearest Neighbor (ENN) technique, an IS method which will be discussed in Section 4.6. An
example of SMOTE-ENN is given in Figure 2.6. We have used k = 5 in the execution of
SMOTE and k = 3 for ENN, which are the default parameters for the respective methods.

SMOTE + Tomek Links

The authors of [7] noted that additional problems may be present in imbalanced datasets
apart from the actual class imbalance itself. In particular, they indicate that class clusters
may not be well defined. Two explanations for this phenomenon are offered. First, the
large presence of majority instances may make it impossible to recognize minority clusters.
Secondly, interpolation to create new minority instances can expand existing clusters of the
minority class and cause overlap with majority clusters. Both situations are characterized
by elements of opposite classes lying close together. Such pairs can be located by the use of
Tomek links, as discussed in Section 2.1.1.

SMOTE+Tomek Links (SMOTE-TL) performs two steps, as illustrated in Figure 2.7, to
create a more balanced dataset with better-defined class clusters. The first is the application
of SMOTE on the dataset, such that a perfect balance between classes is obtained. Afterward,
the resulting dataset is cleaned by locating Tomek links and removing all elements belonging
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SMOTE TL

Figure 2.7: Illustration of the execution of SMOTE-TL. First, the dataset is oversampled by
SMOTE. Next, all Tomek links are removed.

to such pairs. In Section 2.1.1, only the majority instances in these pairs were removed, but
SMOTE-TL removes the pairs as a whole.

SMOTE-RSB∗

SMOTE-RSB∗ is a hybrid resampling method introduced in [89]. As a first step, SMOTE is
executed to balance the dataset and afterward the resulting set of elements is cleaned by an
editing method based on concepts from rough set theory [82].

The data cleaning is achieved by only including a subset of the synthetic instances generated
by SMOTE in the final dataset. The entire set of original elements is included as well.
To decide which synthetic elements are retained, SMOTE-RSB∗ determines the rough lower
approximation of the minority class and selects all synthetic minority elements belonging to
this set. We refer to [82] and [89] for a detailed description of the calculation of the lower
approximation.

When none of the synthetic elements belong to the lower approximation of the minority class,
SMOTE-RSB∗ does not return the original set, but the one constructed by SMOTE. The
authors of [89] motivated this choice by the fact that a dataset that has been modified by
SMOTE usually obtains better classification results than the original imbalanced dataset.

Spider

The Spider method was introduced in [100] as a combination of oversampling minority el-
ements that are prone to misclassification and the removal of majority elements that take
part in the misclassification of several minority instances. As a first step, the algorithm flags
all instances as either safe or noisy by using the 3NN rule. Safe instances are those that
are classified correctly by their three nearest neighbors. When an element is misclassified by
3NN, it is flagged as noisy. In the remainder of its execution, Spider behaves differently for
the two types of instances.

Its developers proposed three different ways in which Spider can modify the minority class:
weak amplification, weak amplification and relabeling and strong amplification. In [100], no
version was put forward as being the best option, so we have included all three in our exper-
iments. We describe the three techniques below:

• Weak amplification: dx duplicates of every noisy positive element x are created, where
dx is the number of safe negative instances among the k nearest neighbors of x. In
this way, positive elements that were initially difficult to classify, may now be classified
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correctly and not be considered as noise anymore. We have used k = 3, as was done in
[100].

• Weak amplification and relabeling: this is a combination of weak amplification, as
discussed above, and the relabeling of some noisy negative instances as positive. For each
noisy positive instance, all noisy negative instances among its three nearest neighbors
are relabeled as positive.

• Strong amplification: as opposed to the two described above, this last technique uses
both the safe and noisy positive instances. Any safe positive instance x is amplified by
duplicating it as many times as there are safe negative instances among its three nearest
neighbors. This number is at most one, since x is labeled as safe and therefore has at
most one negative neighbor, which may or may not be safe itself. The noisy positive
instances are reclassified using five nearest neighbors. We remind the reader that the
initial label was determined based on the three nearest neighbors. When the extended
classification yields a correct result, the instance is amplified by duplicating it as many
times as there are safe negative instances among its three nearest neighbors. In the
other case, even more copies are added, namely the number of safe negative instances
among its five nearest neighbors.

As a final step, the noisy negative instances are removed from the dataset. Note that when
relabeling was applied, some of the original noisy negative instances may have been relabeled
as positive. Such instances are not removed in this step.

Spider2

Spider2 [80] is similar to Spider in that it executes a preliminary step in which instances are
flagged as either safe or not-safe. The difference with Spider lies in the fact that the latter
flagged all instances at the beginning of its execution. Spider2 first flags and processes the
negative instances and proceeds with the positive instances in a second phase. This means
that the flags of the positive instances are determined based on the partially modified and
not the original dataset.

A negative instance is flagged as safe when it is classified correctly by its k nearest neighbors.
In the other case, it is flagged as not-safe. Depending on the options specified by the user,
the negative instances flagged as not-safe are either removed from the dataset or relabeled as
positive.

Proceeding with the positive class, of which the size may have increased as a result of the
actions of the algorithm on the negative elements, the instances are classified with the kNN
rule and flagged as safe when the classification is correct. Otherwise, they are flagged as
not-safe. If the user so requested, positive instances flagged as not-safe are amplified. To
this end, two different techniques can be used. Weak amplification adds dx,k copies of an
element x to the dataset, where dx,k equals the difference between the number of negative
and positive instances among the k nearest neighbors of x increased by one, to ensure that at
least one duplicate is generated. Strong amplification first verifies whether a not-safe element
x is also misclassified by its (k + 2) nearest neighbors. If so, dx,k+2 copies of x are added to
the dataset. In the other case, the number of duplicates is dx,k.
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In our experimental study, we have used relabeling in the first phase and strong amplification
in the second, as these choices were put forward in [80] as representing the best-performing
version of Spider2. The value of k was set to 3, as the Spider-method described above also
uses the 3NN rule.

2.2 Cost-sensitive learning

As we saw in Section 1.1, the suboptimal performance of standard learning techniques may
be due to their incorrect assumption of equal class distributions within the training set. As is
often the case when dealing with imbalanced data in real-world applications, the consequences
of misclassifying an element depend on its actual class. Usually, a misclassification of a positive
instance as negative is more severe than the misclassification of a negative element. A common
example is found in the area of cancer research, where failing to diagnose a diseased person
with cancer (false negative) is clearly worse than incorrectly informing a non-diseased person
of having cancer (false positive). Additional examples can be found in e.g. [111].

The difference in cost assigned to the various types of misclassifications can be modeled in a
cost matrix or loss matrix (e.g. [77]). For a binary classification task, this matrix takes on
the form given in Table 2.1. We invite the reader to compare this table with the confusion
matrix, which was introduced in Section 1.2.1.

Table 2.1: Example of a cost matrix for a two-class dataset.

Actual
Predicted Positive Negative

Positive cTP cFN
Negative cFP cTN

For multi-class problems with Ω classes, it generalizes to an Ω×Ω matrix C, where the entry
cij represents the cost of classifying an element of the ith class as belonging to the jth class.

Applied to the classification of imbalanced datasets, it is commonly assumed (e.g. [72], [102])
that

cTP = cTN = 0,
which means that there is no cost in predicting the correct class and furthermore

cFP ≤ cFN ,

i.e. a larger weight is assigned to the misclassification of positive instances. The final overall
cost (see [72]) can be calculated as

cost = FNR · cFN + FPR · cFP ,

with FPR and FNR respectively denoting the false positive and false negative rates obtained
by the classifier.

Algorithms making explicit use of cost distributions are called cost-sensitive learners. These
methods seek to minimize the overall cost, rather than the overall error rate. The three
methods below are discussed in further detail in their respective references. A detailed review
can also be found in e.g. [72].
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Cost-sensitive k Nearest Neighbor

The cost-sensitive kNN rule (CS-kNN) was introduced in [51]. To minimize the overall cost,
a previously unseen element x is assigned to the negative class when

cFN · p(Pos |x) < cFP · p(Neg |x), (2.3)

i.e. when the cost of misclassifying x as negative is expected to be smaller than the cost of
misclassifying x as positive. The values p(Pos |x) and p(Neg |x) represent the probability
that x respectively belongs to the positive or negative class. They are estimated by the
proportion of the k nearest neighbors of x belonging to that class. In particular,

p̂(Pos |x) = k+
k

and p̂(Neg |x) = k−
k
, (2.4)

where k+ and k− denote the number of positive and negative nearest neighbors of x respec-
tively. Expression (2.3) can be rewritten to

p(Neg |x) > cFN
cFN + cFP

.

When we rescale the misclassification costs such that cFN + cFP = 1 and combine this with
(2.4), we conclude that instances are classified as negative when

k−
k
> cFN

and are assigned to the positive class otherwise.

As was done in [72], we have set cFN to the IR of the dataset and cFP to one in our experi-
mental study. Normalizing these values yields

cFN = IR
IR + 1 and cFP = 1

IR + 1 .

We have executed CS-3NN, CS-5NN, CS-7NN and CS-9NN. Note that CS-1NN would coincide
with 1NN itself.

Cost-sensitive C4.5 decision trees

The goal of cost-sensitive C4.5 decision trees [103] is twofold. They seek to minimize both the
number of high cost misclassification errors and the actual overall cost. Instances are assigned
an initial weight, such that the construction of the decision tree focuses more on instances
having high misclassification costs. The weights remain unchanged during the course of
the algorithm. They form an indication of the relative importance of instances in later
classification of newly-presented elements. The splitting criterion of C4.5 is modified to take
into account these weights.

The weights themselves are calculated class-wise and the weight of an element belonging to
the jth class is given by

w(j) = C(j) n∑Ω
i=1C(i)ni

,
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where n is the total size of the dataset and ni the cardinality of the ith class. The function
C(·) represents the cost of misclassifying an element of the jth class. In the general Ω-
class situation, this means C(j) =

∑
k 6=j

cjk, which corresponds to the sum of the off-diagonal

elements on the jth row of the Ω× Ω cost matrix C.

The final classification of an instance x is executed by following the corresponding path down
the tree, as is done by C4.5. Having reached a leaf, the expected cost of predicting the
instance as belonging to each class is determined and the final prediction is made as the class
for which this cost is minimal. In particular, x is predicted to belong to the ith class, when

i = argmin
j

(ECj(x)) .

The values ECj(x) are calculated as

ECj(x) =
∑
k

Wk(x)cjk,

where Wk(x) is the number of elements of the kth class present in the leaf reached by x.

Cost-sensitive SVM

In [111], different loss functions are introduced for the positive and negative classes, to ascer-
tain that the decision boundary trained by the SVM is located further away from the positive
class. The optimization function to determine the separating hyperplane is modified to

min
w,ξ,b

max
α,β

1
2 ||w||

2 + C+ ∑
i∈{j|yj=1}

ξi + C−
∑

i∈{j|yj=−1}
ξi

−
n∑
i=1

αi[yi(w · xi − b)− 1 + ξi]−
n∑
i=1

βiξi

)
, (2.5)

where C+ and C− denote the misclassification costs of positive and negative instances re-
spectively, i.e. C+ = cFN and C− = cFP .

The constraints on the multipliers αi are given by

0 ≤ αi ≤ C+ if yi = 1
0 ≤ αi ≤ C− if yi = −1.

2.3 EUSBoost

Ensemble classifiers (e.g. [92]) combine several individual classifiers to obtain a better per-
formance. One type of ensemble learning is represented by bootstrap aggregating (bagging)
[8], a technique which aggregates the results obtained by training several classifiers on boot-
strap samples of the original training set T . A bootstrap sample is constructed by randomly
drawing |T | elements from T with replacement. This approach has been used in [112] in
combination with resampling techniques in the development of Overbagging, Underbagging
and SMOTEBagging.
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A number of interrelated boosting algorithms have also been designed to deal with class
imbalance. The boosting approach (e.g. [35], [96]) in ensemble learning trains a classifier
iteratively and reweighs the dataset in each iteration, assigning larger weights to currently
misclassified instances. As a result, the next iteration focuses more on these harder-to-learn
instances, such that they may also be classified correctly. We have included one ensemble
method in our experiments, EUSBoost [39], which was shown in its original proposal to
outperform several other state-of-the-art ensemble methods.

The authors of [39] noted that several ensemble methods do not perform well when faced with
data imbalance, as they are designed to maximize the accuracy, which, as discussed before,
is not a fit measure when working with imbalanced datasets. They introduced EUSBoost, a
boosting algorithm in the spirit of RUSBoost [98], using evolutionary techniques embedded
in the AdaBoost.M2-method [36] to select a subset of the majority instances in each iteration.
The selection of majority instances is achieved by the application of the EUS method (see [42]
and Section 2.1.1) to the dataset. The fitness function of the EBUS-MS setup in expression
(2.2)

fitnessEUS =

g −
∣∣∣1− N+

n−

∣∣∣ · P if n− > 0
g − P if n− = 0

was further modified, to promote diversity among chromosomes, to the form

fitnessEUSQ
= fitnessEUS ·

1.0
β
· 10.0

IR −Q · β,

where β is an iteration-dependent weight factor, which is defined as

β = N − t− 1
N

in iteration t, t = 1, . . . , N . The value N equals the total number of iterations performed by
the algorithm and was set to 10 in both our experiments and [39]. Q represents the global
maximum of all pairwise values for the Q-statistic [127], measuring the diversity between the
current chromosome and every solution obtained in previous iterations.

EUSBoost is the ensemble learner that has been included in our experimental study, but it
is not the only example of how a boosting algorithm can be used to enhance imbalanced
classification. Two other techniques, following the same scheme, have been proposed in the
literature. RUSBoost [98], upon which EUSBoost is based, applies the undersampling tech-
nique RUS (see Section 2.1.1) in each iteration. Similarly, SMOTEBoost [19] balances the
dataset in each iteration by the application of SMOTE, an oversampling technique discussed
in Section 2.1.2. The synthetic minority instances created by SMOTE are solely used to learn
the classifier in an iteration and are discarded when it is completed.

2.4 Looking ahead

Several authors (e.g. [62], [71], [102]) have noted that the imbalance between classes itself
may not be the only aspect hindering a decent performance of a classifier. Experimental work
has shown that other aspects, such as the small absolute size of the minority class [62], the
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presence of small within-class concepts ([63], [115]) and existing overlap between classes ([25],
[43], [85]), can lead to further complications.

The main focus of our work lies on the application of IS to the training set. Our approach
can be considered as a solution at the data level, as our methods modify the dataset in a
preprocessing step before the classification model is constructed. It exhibits a strong link
to undersampling, but differs from it by the fact that we are able to reduce both classes,
instead of just one. In some way, it is also related to the hybrid resampling approach, as both
techniques act on the two classes in the dataset. Nevertheless, hybrid algorithms increase the
size of the minority class, while our methods do not apply any oversampling whatsoever.

Furthermore, balancing the dataset is not our primary aim, even though some methods still
retain it as a subgoal. By not directing the sole focus to balancing, some of the other issues
discussed above may also be resolved. Before introducing our new methods, we conclude the
introductory part of this work with a chapter reviewing IS itself.
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3 Instance selection

The kNN classifier, as discussed in Section 1.1, is a simple and widely used classification
method in machine learning. It has a training set T of prototypes at its disposal to make
a prediction about the class of a newly presented element x. To this end, the k nearest
neighbors of x in T are determined and x is assigned to the class to which the majority of its
neighbors belong.

Even though this rule is very intuitive, it certainly has some less attractive aspects as well.
The kNN classifier is a so-called lazy learner, storing the set T in full, rather than explicitly
constructing a classification model at training time. This can take up a substantial amount of
memory when working with large datasets. Another disadvantage is that in order to classify
a new instance, every prototype needs to be evaluated in search of the k nearest neighbors.
Finally, each element of the set T receives an equal weight in the classification of new elements.
This implies that the rule is very sensitive to noise present in the data.

A solution to the inherent problems of the kNN rule is presented by Prototype Selection (PS).
Before being used in the classification of new elements, the set T is reduced to a subset
S ⊆ T by only selecting relevant elements. The prototype set used in the final classification
is limited to the elements of S. Which elements are considered as relevant, depends on
the method being used in the selection. A PS method aims to achieve one or both of the
following goals: improving the classification performance of the classifier and reducing the
storage requirements.

The first PS method, CNN, was introduced by Hart in [53]. A vast number of additional
methods quickly followed and new ones are still being introduced. We remark that the
term PS is used specifically when the posterior classification is executed by the kNN rule.
In general, one would refer to this procedure as training set selection, sample selection or
Instance Selection (IS). In our experimental study, we use kNN, decision trees and support
vector machines in the classification process and we therefore employ the term IS in this work.

Throughout this section and the remainder of this work, the following conventions in notation
are used:

• T : the original set of training data.

• S: the set of selected instances, subject to S ⊆ T .
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• l(x): the class label of the element x.

3.1 Taxonomy of IS methods

To distinguish between the characteristics of different IS methods, [41] introduced a full
taxonomy, which we recall below. A subdivision is made in several ways: based on the
direction of search, the type of selection and the evaluation method being used.

Direction of search

• Incremental: the method sets out with an empty set S and stepwise adds elements of
T to it.

• Decremental: the method starts with a set S = T and proceeds with the stepwise
removal of instances.

• Batch: the method starts with a set S = T . The complete set is processed, marking
the elements that satisfy a given elimination criterion. At the end, all marked instances
are removed at once.

• Mixed: the method can both add elements to and remove them from S.

• Fixed: the size of the set S is fixed at the outset of the method. Elements can be added
to or removed from S, as long as the fixed size is preserved.

Type of selection
We distinguish between internal points, located in the centers of homogeneous regions, border
points, located in the boundaries between different classes and noise points. Methods differ
from each other by selecting different types of points. The following subdivision is used:

• Condensation: redundant elements are removed from T . Element are considered to be
redundant when they are not essential for a good classification performance. Redundant
points are mostly internal points. Border points are retained.

• Edition: the method attempts to remove noisy elements from T , since such instances
have a negative influence on the classification performance. In this way, mostly noise
and border points are eliminated.

• Hybrid: the method removes noise and both internal and border points.

Evaluation method
Some IS methods evaluate a candidate set S by using a classifier. A distinction can be made
as follows:

• Filter: a classifier may be used in the criteria to add or remove specific elements, but
never to evaluate an entire candidate set S. Methods that do not use a classifier at all
are listed as filters as well.

• Wrapper: the classifier is used to evaluate entire candidate sets S.
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3.2 Consistency

Several IS methods aim to produce a consistent subset S of T . For the sake of clarity, we fix
the definition of consistency and the related notion of k-consistency beforehand.

Definition 3.2.1. A consistent subset S of T is a subset S ⊆ T which leads to a correct clas-
sification of all elements of T by the 1NN rule when the elements of S are used as prototypes.

In this definition, it is implicitly assumed that no two elements of different classes coincide in
all features. This assumption is also made by authors of proposals of IS methods producing
consistent subsets and is not repeated explicitly in later chapters.

The definition of k-consistency uses the more general kNN rule:

Definition 3.2.2. A k-consistent subset S of T is a subset S ⊆ T which leads to a correct
classification of all elements of T \ S by the kNN rule when the elements of S are used as
prototypes.

When k = 1, the definitions of consistency and k-consistency coincide. Note the difference
between the use of T and T \S in the definitions given above. In Definition 3.2.1, elements of
S ⊆ T are used as their own nearest neighbor in the classification by 1NN and are therefore
automatically classified correctly. In Definition 3.2.2 on the other hand, when k > 1, elements
in S are not necessarily classified correctly by kNN and the condition therefore only concerns
elements of T that have not been selected for S.

3.3 IS methods for imbalanced data

As described in the introduction, our work is focused on modifying a large number of existing
IS methods to enhance their performance on imbalanced data and to, ideally, improve the
classification process. To the best of our knowledge, this has only been attempted once
before, by the authors of [42], who modified the IS algorithm CHC. Their resulting methods
are described in Section 2.1.1. In [109], the FRPS method was also adapted to deal with
imbalanced data, but it was mainly used as a data cleaning measure before application of the
popular oversampling technique SMOTE (Section 2.1.2).

We consider a total number of 33 methods. Our strategy consists of studying them in groups,
which are formed by selecting algorithms which share certain characteristics. As such, some
modifications may also be shared among them. Chapters 4-8 each focus on a particular
group of IS methods, giving a detailed description of both the original proposal and our new
versions. Below, we briefly introduce each chapter, by indicating on which IS methods they
focus, together with their respective references.

In Chapter 4, we consider the so-called NN-methods. The group consists of eight algorithms,
which are all filter methods. These methods share the use of the kNN rule in their selec-
tion or removal criteria. We study five condensation methods, FCNN [3], GCNN ([17],[20]),
MCNN [27], RNN [45] and CNN [53], and three editing techniques, MENN [54], AllkNN [104]
and ENN [117]. CNN and ENN are two of the earliest IS methods to have been proposed in
the literature and the remaining six are modified versions of them.

47



Chapter 3. Instance selection

Chapter 5 focuses on optimization methods, which are all hybrid wrapper approaches to IS. It
considers six genetic algorithms: CHC [15], GGA [15], SGA [15], SSMA [40], CoCoIS [44] and
IGA [57]. The two remaining methods methods in this chapter, Explore [14] and RMHC [99],
are non-genetic. RMHC uses an objective function which needs to be maximized, while
Explore aims to minimize its cost function.

The seven methods discussed in Chapter 6 are MSS [5], ICF [10], MoCS [11], HMNEI [76],
NRMCS [113], DROP3 [118] and CPruner [129]. These methods all model the positive effect
an element may have on the classification of others in order to make a sensible decision to
remove or retain it in the dataset.

In Chapter 7, four editing methods are studied, which do not use the kNN rule, but all follow
the general scheme first introduced by ENN. These methods are ENRBF [47], NCNEdit [94],
RNG [95] and ENNTh [106].

Finally, Chapter 8 discusses the remaining IS methods, which do not fit in one of the categories
above, nor do they share enough characteristics for them to be considered a separate family.
The five remaining methods are IB3 [1], Reconsistent [73], PSC [81], POP [90], PSRCG [97]
and FRPS [107].

Figure 3.1 displays all 33 methods, according to their place in the taxonomy of Section 3.1.
A division is made based on the evaluation method and type of selection. When studying the
specific methods, we always report their full taxonomic description.

IS methods

Condensation

Filter

CNN (4)
FCNN (4)
GCNN (4)
MCNN (4)
RNN (4)
MSS (6)
POP (8)
PSC (8)

Reconsistent (8)

Edition

Filter

AllKNN (4)
ENN (4)

MENN (4)
MoCS (6)

ENNTh (7)
ENRBF (7)

NCNEdit (7)
RNG (7)

Wrapper

FRPS (8)

Hybrid

Filter

CPruner (6)
DROP3 (6)
HMNEI (6)

ICF (6)
NRMCS (6)

IB3 (8)
PSRCG (8)

Wrapper

CHC (5)
COCOIS (5)
Explore (5)
GGA (5)
IGA (5)

RMHC (5)
SGA (5)

SSMA (5)

Figure 3.1: Taxonomy of IS methods. Between brackets, we refer to the chapter in which the
method is presented.
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Introduction to Part II

Some authors (e.g. [42]) do not consider IS to be applicable to imbalanced data, or to be
more precise, it is not regarded as a valid measure to improve the classification process for
such datasets. Many existing methods indeed prove to be unsuitable in this situation. In
an earlier example, we remarked that small clusters of the minority class are prone to be
considered as noise. As a result, editing methods, where noise filtering is the primary aim,
may remove such clusters in their entirety. The performance of a condensation method can
also be hampered by the class imbalance, e.g. when it uses a simple redundancy criterion
that implicitly assumes an equal balance between classes. In our experimental study, we
observed that even the complete removal of the positive class is a non-negligible possibility
for a considerable amount of IS methods.

Part II is dedicated to the explicit modification of 33 IS methods, such that they take into
account the skewness present in the class distribution within the dataset. Our new methods
are denoted as ISImb methods. Each of the five chapters in this part considers a group of IS
methods, as introduced in Section 3.3. They provide a description of the original methods,
together with the values to which their parameters were set in the experimental study. These
coincide with the default values, as used in e.g. [41]. Each chapter also presents the relevant
modifications, in which, as stated before, we ensure that the new methods resonate the
intentions of the original IS methods. In particular, the ISImb methods will mostly occupy
the same place in the taxonomy from Section 3.1 as the methods they were derived from.

Several recurring modifications are shared among all groups of IS methods, of which an
example can be found in their use of g or AUC when assessing the use of elements in a
posterior classification process. In their construction of S, most ISImb methods will also split
up the removal or selection criteria between classes, such that they can explicitly use the class
information and nuance their behavior depending on whether the instance at hand belongs to
the positive or negative class. Intuitively, this will allow to protect minority instances from
removal as well as to apply less strict inclusion criteria for them.
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4 NN-methods

This chapter is dedicated to the study of the so-called NN-methods. This is a group of
methods which all make explicit use of the kNN rule in their selection or removal criteria.

The Condensed Nearest Neighbor (CNN) [53] was the first IS method to be introduced in
the literature. It seeks to remove redundant elements from the training set T , which makes
it a condensation method. Four other condensation algorithms considered in this chapter are
modified versions of CNN: Modified Condensed Nearest Neighbor (MCNN) [27], Generalized
Condensed Nearest Neighbor (GCNN) ([17], [20]), Fast Condensed Nearest Neighbor (FCNN)
[3] and Reduced Nearest Neighbor (RNN) [45]. All of them are filters and select elements from
T in an incremental fashion, except for RNN, which has a decremental direction of search.

Another widely-used and longstanding IS technique is the Edited Nearest Neighbor (ENN)
method [117]. As opposed to CNN and its relatives, ENN is an editing method. It is a filter
which removes instances in batch, as do its later descendants All-kNN [104] and Modified
Edited Nearest Neighbor (MENN) [54].

4.1 CNN

The set T is ordered arbitrarily and S is initialized with one random element of each class
in T . Afterward, CNN classifies the elements x ∈ T \ S with the kNN classifier, using S as
prototype set. When x is misclassified, it is added to S. Otherwise, S remains unchanged.
After the first complete pass through T , these steps are repeated for elements in T \ S, until
no elements are added to S during an entire iteration or there are no elements left in T \ S.

The algorithm terminates when either all elements in T \ S are being classified correctly or
when S = T . At the end, S consists of exactly those elements that suffice to classify all
instances of T \ S correctly by the kNN rule, which means that S is a k-consistent subset of
T . Note that this trivially holds when S = T , since in that case T \ S = ∅. When k = 1,
which is the value used in the experimental study, all elements of T will be classified correctly
by the 1NN rule, meaning that S is a consistent subset of T .

We note that the obtained set S depends on the order that was employed on T , i.e. if a
different order would have been used, CNN would generally yield a different final set S.
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CNNImb

Since its execution depends on the order defined on T , CNNImb explicitly sorts the elements
before the main method starts, such that it may favor the inclusion of more valuable elements
to S. An element is considered as valuable when it contributes positively to the accuracy
of the classifier on its own class and does not cause many instances of the other class to be
misclassified.

Additionally, CNNImb also guarantees that the final set S is not more imbalanced than T ,
which prevents the instance selection from being too forceful and deteriorating the skewness
in the class distribution. Although making a dataset more imbalanced does not necessarily
imply that the classification performance worsens, it does feel inappropriate to do so, as it
has been argued that class imbalance generally hampers the execution of classifiers.

New order on T

CNNImb assigns a score to all elements and sorts them according to these values. The score of
an element should represent its contribution to the classification, where, taking the imbalance
in the data into account, we make a distinction between classes.

To determine the scores, CNNImb classifies T with the kNN rule, using leave-one-out valida-
tion, and counts the number of times an element contributed, as one of the k neighbors, to
a correct classification of an element of the same class and the number of times it led to the
incorrect classification of an element of the other class. In particular, the score of an element
x ∈ T is calculated as

score(x) = wi ·
(

1− Incorrother
All

)
+ wc ·

Corrown
All

,

where Incorrother and Corrown are the number of times x was part of respectively the incorrect
classification of an element of the other class and the correct classification of an element
of its own class. Finally, All represents the number of times x was used as one of the
k neighbors in the classification of any element. Note that All does not necessarily equal
Incorrother +CorrOwn, as an element can also be part of the misclassification of an instance
of the same class, when the opposite-class neighbors of the latter dominate its neighborhood.
Nevertheless, when k = 1,

All = Incorrother + CorrOwn

always holds.

The weights wi and wc satisfy wi + wc = 1. Their values are calculated based on the IR in
the dataset. When the imbalance is larger, we want to attribute more weight to the term
representing the incorrect classification of elements of the other class, since the large presence
of majority elements will have a detrimental effect on the classification of minority elements
and the algorithm should consider ‘safer’ majority elements first. These are negative instances
which lead to a relatively lower number of misclassifications of positive elements. To this end,
we use

wi = 1− 1
2 · IRT

and wc = 1− wi = 1
2 · IRT

.

When the dataset is perfectly balanced, the weights are both equal to 1
2 , since IRT = 1.
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As the scoring procedure is shared between classes, it is guaranteed that the scores are scaled
in the same way, which is vital since the ordering of the entire set T obviously contains
elements of both classes. By sorting the elements in decreasing order of score(·), elements
exhibiting a more acceptable behavior in the classification are considered in earlier stages of
the algorithm.

Condition on IRS

CNNImb ensures that the IR of S does not exceed the one of the original set T . Since CNN is
an incremental algorithm, this is a challenge to implement directly. If we would simply have a
condition stating that IRS should be at most IRT , the algorithm would fail at the beginning,
since

|S| = 1⇒ IRS = +∞ > IRT .

This would lead to an empty set S. To address this issue, this condition is put in place only
in a later stage of the method, namely after the first entire pass of T has been executed. To
guarantee IRS ≤ IRT , the method first verifies whether the addition of a majority element to
S would result in an IR that is greater than the one of T . If it does, it is decided not to add
this element after all.

4.2 MCNN

The set S is initialized with one random element of each class. Next, T is classified by 1NN
using S as prototype set, whereby the set Sm of misclassified elements is constructed. For
each class present in Sm, a representative element is added to S. This process is repeated until
all elements of T are being classified correctly. In this way, the algorithm yields a consistent
set S.

Regarding the initialization of S and the choice of the representative elements, the geometric
mean M is determined class-wise. For class l, M is computed as

M =
nl∑
j=1

Slj
nl
,

where nl is set to the cardinality of class l in Sm. The vectors Slj represent the elements of
this class. The element closest to M , the centroid, is chosen as representative. When multiple
elements have minimal distance to the centroid, the lexicographically smaller one is chosen,
where the lexicographic order on the vectors Slj , j = 1, . . . , nl is used.

An alternative selection procedure was proposed in [27], which considers the frequency of
features within T to determine representative elements. However, since this version is only
applicable to datasets with binary features, i.e. which can only take on the values 0 and 1,
we decided to use the former, more general, strategy.

A slightly different version of MCNN was also proposed in [27], where an additional decre-
mental step is carried out, eliminating redundant elements from S.
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MCNNImb

In each step, MCNN adds representatives of the set of misclassified elements Sm to S. Within
Sm, no distinction between classes is currently being made. MCNNImb does distinguish
between the two classes and implicitly assigns different weights to the misclassification of
majority and minority elements.

For the minority class, the new method still demands that all elements must be classified
correctly, but it relaxes this criterion for the majority class, such that α% suffices. In par-
ticular, when more than α% of the majority elements are being misclassified, the set Sm is
constructed in the original way. On the other hand, when less than α% is being misclassified,
no elements of the majority class are used in Sm and only representatives of the minority class
are therefore added to S. This modification ensures that MCNNImb pays more attention to
the correct classification of minority instances.

Value of α

To determine α, MCNNImb uses the following procedure. First, it determines p as the percent-
age of majority elements that are classified correctly by leave-one-out validation. It suffices
that only p′% of the majority class is classified correctly. The value p′ is taken from the
interval [0.8p; p] and depends on IRT . The lower bound 0.8p was heuristically chosen and the
factor 0.8 is not dataset dependent. The higher IRT , the lower the value of p′ is. We set

p′ = 0.8p+
√

IRT

IRT
0.2p

=
(

4IRT +
√

IRT

5IRT

)
p.

The value p′ corresponds to 1− α. For IRT = 1, we find p′ = p.

Condition on IRS

As for CNNImb, we guarantee that the IR does not exceed IRT and this measure is put in
place starting from the second iteration of the algorithm.

4.3 GCNN

GCNN is a modified version of the CNN method of Section 4.1. It modifies both the ini-
tialization and selection procedure. Furthermore, instead of simply demanding the correct
classification of all instances by kNN, the method further ensures that all instances in T are
sufficiently close to their nearest same-class neighbor in S.

Initialization

The initialization of S is performed by selecting a representative element of each class. This
element is chosen by means of a voting procedure. When Tl ⊆ T is the set of elements of class
l, each element x ∈ Tl casts a vote on its nearest neighbor in Tl \ {x}. The element with the
largest number of votes is selected for addition to S.
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Construction of S

We first recall some definitions introduced by the developers of this algorithm in order to stay
in unison with the original proposal. Two elements belonging to different classes are called
heterogeneous, while those sharing the same class label are denoted as homogeneous. Drawing
from these concepts, the value δn is defined as the minimal Euclidean distance between two
heterogeneous elements in T , i.e.

δn = min(‖xi − xj‖ : xi,xj ∈ T and l(xi) 6= l(xj)).

When elements of T \ S are misclassified by the current set S, they are called unabsorbed by
this set. As described in Section 4.1, CNN adds elements to S when they find themselves
in this situation. When k = 1, CNN considers an element x ∈ T to be absorbed, when the
nearest elements p,q ∈ S with

l(x) = l(p) and l(x) 6= l(q)

satisfy
‖x− q‖ − ‖x− p‖ > 0,

since this means that the instance nearest to x belongs to the same class and x is therefore
classified correctly by the 1NN rule and does not need to be added to S.

GCNN modifies this CNN criterion. An element should be close enough to its nearest neighbor
of the same class to be considered as absorbed. GCNN adds elements to S when they are
not strongly absorbed by the current set. An element x ∈ T is strongly absorbed when the
nearest elements p,q ∈ S with

l(x) = l(p) and l(x) 6= l(q),

satisfy
‖x− q‖ − ‖x− p‖ > ρδn,

with ρ ∈ [0, 1] and δn as defined above. When ρ = 0, we find the absorption criterion of CNN,
but when ρ > 0 the criterion is stricter. This means that elements are absorbed less quickly,
resulting in more elements to be added to S. In the experimental study, this parameter was
set to its maximal value, namely ρ = 1.

After the initialization, GCNN assesses for each element x ∈ T whether it is strongly absorbed.
When all elements are strongly absorbed, the algorithm terminates. If not, Tm is defined as
the set of elements that are not strongly absorbed by S and a representative element of each
class in Tm is added to S. These elements are chosen with an analogous voting procedure as
described above. This step is repeated until all elements in T are strongly absorbed.

GCNNImb

Currently, in each step, GCNN adds a representative element from among the misclassified
instances of each class to S. Such representatives are determined by letting elements vote on
each other.
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In GCNNImb, the voting procedure has been modified, such that misclassified minority el-
ements have a say in determining the representative majority element. For every minority
element, its nearest majority neighbor xmaj is determined and the number of votes for xmaj
is decreased by one. In this way, only ‘safe’ majority elements are selected, i.e. majority
elements that are not too near to many minority elements.

We also studied the modification of the absorption criterion by making a distinction between
the minority and majority class. This was achieved by the use of two parameters ρmaj and
ρmin with

ρmaj ≤ ρmin,

such that elements of the minority class are absorbed less quickly and added more easily to S.
Nevertheless, our experiments showed that using ρ = 1 for both classes, which is the default
value, yields the best results. Therefore, the sole difference between GCNN and GCNNImb is
the new voting procedure.

4.4 FCNN

This method makes use of Voronoi cells. For an element x of S, this cell consists of elements
y ∈ T that are closer to x than to any other element in S,

V or(x, S, T ) = {y ∈ T |x = nn(y, S)},

where nn(y, S) is the nearest neighbor of y within the set S. Using this concept, we can
further define the set of Voronoi enemies as

V oren(x, S, T ) = {y ∈ V or(x, S, T ) | l(x) 6= l(y)},

which are the elements in its Voronoi cell belonging to a different class than x. These elements
would be misclassified by 1NN, when S is used as prototype set, since their class label does
not coincide with that of their nearest neighbor x.

FCNN initializes S as the set of centroids in T , which is determined by selecting, for each
class, the element closest to the geometric mean of the class. Afterward, a consistent subset
S ⊆ T is constructed by iteratively adding representative elements of the V oren(·, S, T ) sets
of each element of the current set to S, until none of the elements in S has any Voronoi
enemies anymore. This implies that no element in T would be misclassified by the 1NN rule.
We note that a different number of elements can be added in each step, since their number
coincides with how many elements of the current set S have a non-empty set of Voronoi
enemies. The representative element of the set of Voronoi enemies of x ∈ S is chosen as the
nearest neighbor of x within V oren(x, S, T ).

The authors of [3] also proposed some alternative versions of FCNN, which differ among each
other with respect to the initialization procedure, the selection of representative elements and
the allowed number of instances added to S in each iteration.
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FCNNImb

FCNN performs a number of iterations and terminates when none of the elements of S have
any Voronoi enemies. This criterion can be modified such that Voronoi cells of minority
elements are still allowed to contain some majority elements, i.e. that their set of Voronoi
enemies can be non-empty. These remaining Voronoi enemies, which necessarily belong to
the negative class, would be misclassified by 1NN, but FCNNImb tolerates this shortcoming
as it may result in an easier classification of newly presented positive elements.

To be precise, FCNNImb halts, when for all elements x of the majority class

V oren(x, S, T ) = ∅

holds, which coincides with the original criterion, and when for all minority instances x we
have

|{y | y ∈ V oren(x, S, T ), l(y) 6= l(x)}|
|V oren(x, S, T )| ≤ ε,

with ε ∈ [0, 1]. During the course of the algorithm, the same conditions are applied to decide
whether or not to add a representative element of the Voronoi cell to S.

The parameter ε is not user-defined, but based on the IR of the original dataset. We use

ε = 0.5 ·
(

1− 1√
IRT

)
= 0.5 ·

(
IRT −

√
IRT

IRT

)
.

When the dataset is perfectly balanced, we have ε = 0, which means that the original FCNN
method is used. The motivation of the factor 0.5 is that the algorithm never allows more
than half of the elements of the Voronoi cell to belong to a different class.

4.5 RNN

The set S is initialized as T . The algorithm then continues by verifying for each element
x ∈ S whether all elements in T are classified correctly by kNN when S \ {x} is used as
prototype set. If so, x is removed from S. An arbitrary order on the elements of T is used.
This method determines a k-consistent subset S ⊆ T by the stepwise removal of elements
from T . When k = 1, S is a consistent subset of T . This is the value for k that has been used
in our experimental study.

RNNImb

The elements are considered for removal in the reverse order that was used by CNNImb. This
means that more redundant elements are considered first and are more likely to be removed.

Removal criterion for minority instances

RNN initializes S as T and proceeds with the stepwise removal of elements when such a
removal would not lead to a decrease in accuracy with regard to the initial accuracy obtained
by leave-one-out validation of kNN on the entire set T . For minority elements, a slightly
less strict removal criterion has been put in place, such that these elements are only removed
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when their removal causes a strict increase in accuracy. This makes their exclusion from
S less likely and it only takes place when it is evident that this could lead to an increased
classification performance.

Condition on IRS

As for CNNImb, we guarantee IRS ≤ IRT . When an instance of the majority class is removed,
the IR decreases. On the other hand, when a minority instance is removed, it increases.
RNNImb therefore first processes the majority elements, since their removal can decrease the
IR to a point where the removal of minority instances does not lead to IRS > IRT .

4.6 ENN

The algorithm initializes S as the complete set T . Afterward, each element x ∈ S is classified
with the kNN classifier using S \ {x} as prototype set. If x is misclassified, ENN considers it
as noise and marks the element. When all elements have been processed, the ones that have
been marked are removed from S. The default value for k for this method is 3, which is also
the value that has been used in our experiments.

The order in which the elements of S are considered is irrelevant, since they are not removed
from S immediately, but only marked for a posterior elimination.

ENNImb

ENNImb uses an alternative noise criterion for the minority class, such that its elements are
removed less easily than the ones of the majority class. In a first step, it applies the original
algorithm to mark all elements that it considers noisy. Prior to removing them, the modified
algorithm calculates the IR we would obtain. If it is too high, i.e. when the IR of S exceeds
the one of T , some of the marks are undone. To make an informed rather than random
decision about which of the marked minority elements are unmarked, we assign a score to all
minority elements, sort them in an appropriate order of these values and undo the marks of
elements starting at the beginning of the sequence.

Scoring procedure

To determine the score of an element, we use the average distances to its k nearest neighbors
of both the minority and majority class. For an element x, let Nmin(x) be the set of the
k nearest neighbors of the minority class and Nmaj(x) the analogous set for the majority
class. The score of x can be determined in different ways, depending on whether we use
the information from Nmin(x), Nmaj(x) or both. We studied the effect of several candidate
scoring functions in a preliminary study, but no notable differences were observed. We decided
to use the version which takes into account both Nmin(·) and Nmaj(·) and is defined as

score(x) = dmin(x)− dmaj(x), (4.1)

with

dmin(x) =
∑|Nmin|
i=1 d(x,xi)
|Nmin|

and dmaj(x) =
∑|Nmaj |
i=1 d(x,yi)
|Nmaj |

,
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using the notation Nmin(x) = {x1, . . . ,x|Nmin(x)|} and Nmaj(x) = {y1, . . . ,y|Nmin(x)|}. Note
that the values |Nmaj | and |Nmin| usually equal k and are only strictly smaller when the size
of the dataset does not allow for k neighbors of a particular class to be determined. The
elements of T are sorted in increasing order of their scores.

Some caution is warranted, since we cannot be completely certain that when we obtain an
IR of the set S generated by the original ENN method that is higher than IRT , that this is
indeed due to an over-removal of minority elements. It is possible, although unlikely, that the
original minority class has become the majority class. Especially in datasets that are only
slightly imbalanced, such a situation may occur. If marks need to be removed from elements
from the original majority class, the analogous scoring function to (4.1) can mutatis mutandis
be defined as

score(x) = dmaj(x)− dmin(x).

Since we want to define scoring functions that are independent of which class is the new
majority class, instead of specifically using dmin(·) and dmaj(·) as we have done before, we use
down(·) and dother(·). These functions represent the equivalent distance measures, focusing on
the class of the element under consideration or the opposite class respectively. The scoring
functions are therefore given by

score(x) = down(x)− dother(x). (4.2)

4.7 All-kNN

Using its parameter kmax, which was set to 3 in the experiments, All-kNN classifies each
element x ∈ T with the kNN rule and T \{x} as prototype set, for k = 1, . . . , kmax. When an
instance is misclassified, it receives a mark. In the course of the algorithm, an element can be
marked multiple times. This has no additional effect: once an element has been marked, it
remains so. At the end of the algorithm, a batch removal of all marked instances is performed.

All-kNNImb

In All-kNNImb, misclassified minority elements are not explicitly marked, but rather assigned
weights according to how many neighbors were used in its misclassification. When the weight
exceeds a predetermined threshold, the element is removed.

The weight of an incorrect classification of a minority element by its k nearest neighbors
depends on the value of k. In particular, for increasing values of k the weights decrease, which
implies that the incorrect classification by more neighbors is considered less significant than
one by a few nearest neighbors. The motivation behind this approach is that for minority
elements, we can expect several majority elements to be located close by, even when the
element itself should not be considered as noise.

Elimination criterion

The weights are calculated by a decreasing function w(k), for k = 1, . . . , kmax. Afterward,
when considering an instance x ∈ T , it is classified by the kNN rule for k = 1, . . . , kmax. We
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calculate the value
F (x) =

∑kmax
k=1 w(k) · χcorrect(x, k)∑kmax

k=1 w(k)
, (4.3)

where χcorrect(x, k) is a standard indicator function evaluating to 1 when x was correctly
classified by its k nearest neighbors and 0 otherwise. The denominator of (4.3) handles the
normalization and represents the correct classification of x for all values of k.

The value F (x) is compared to a threshold µ and when it is strictly smaller, the minority
instance x is considered as noise and it is not selected. As threshold we use the geometric
mean of the highest and lowest weight. By definition, the highest weight is always 1 and the
lowest is denoted by wmin, of which the value depends on IRT . The threshold is given by

µ = √wmin.

Calculating the weights

For the weight-function w(·), we can use a downward opening parabola with vertex in (1, 1)
and passing through (kmax, wmin). This would yield

w(k) =


wmin−1

(kmax−1)2 · (k − 1)2 + 1 if kmax 6= 1
1 if kmax = 1.

When kmax = 1, the only weight needed in (4.3) is w(1), which is set to 1 by definition. A
straightforward calculation yields

kmax∑
k=1

w(k) =

1 if kmax = 1
2k2

max(wmin+2)−kmax(wmin+5)
6(kmax−1) otherwise.

All-kNNImb uses wmin = 1
IRT

, such that the quadratic function is given by

w(k) = 1− IRT

IRT · (kmax − 1)2 · (k − 1)2 + 1.

As an example, when IRT = 10 and kmax = 5, the corresponding weights are

w(1) = 1, w(2) = 153
160 , w(3) = 124

160 , w(4) = 79
160 and w(5) = 1

10 .

We also considered a linear interpolation between (1, 1) and (kmax, wmin), but the quadratic
approach yielded better results in a preliminary study. The quadratic function yields larger
weights than the linear function, such that it stays closer to the original algorithm. Likewise,
we tested the replacement of the geometric mean with the arithmetic mean in determining
the value of the threshold µ. Since the geometric mean of two numbers is always smaller
than or equal to their arithmetic mean, using the current definition of µ results in a less strict
inclusion criterion for minority elements.

When IRT = 1, we find wmin = 1 and ∑kmax
k=1 w(k) = kmax. The threshold µ is equal to

1, which means that a minority element should be classified correctly by the kNN rule for
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k = 1, . . . , kmax for it not to be considered as noise. This is equivalent to the original
algorithm, which shows that the proposed modification forms a conservative extension.

Protection from complete removal

Finally, to ensure that the algorithm never removes a class in its entirety, we can again make
use of the score function (4.2). When the algorithm has decided to remove all instances of a
class, we reselect the least noisy one, i.e. the one with the maximal value for score(·). Looking
ahead, the same procedure has been put in place for MENNImb.

4.8 MENN

ENN uses the k nearest neighbors of an element x to determine whether or not x is selected
in the final set S. MENN uses the (k + l) nearest neighbors for this purpose, where l is the
number of neighbors that are at equal distance from x as the kth neighbor. The value l is not
fixed at the start of the algorithm and can differ for each element x, where l = 0 is allowed.
An element is marked when all of its (k + l) nearest neighbors belong to the same class, as
it is considered to be a typical element. At the end, MENN removes all unmarked elements
from T .

In general, MENN removes more elements from T than ENN does, because the criterion to
be included in S is stricter. All neighbors need to be of the same class as the element under
consideration, while a majority sufficed for ENN.

MENNImb

MENNImb relaxes the removal criterion for minority elements in two ways. The first is to not
demand all neighbors to be of the same class, but to let a majority suffice. This immediately
weakens the conditions for minority elements to be considered as typical elements and protects
them from removal.

The second modification is to use two different values of k for the majority and minority
classes, with

kmin ≤ kmaj .
This condition results in a less hasty removal of minority instances, as it should be easier
for their own class to dominate their neighborhood as a consequence of its smaller size kmin.
The user enters one value, which will be used as kmaj and the algorithm itself determines the
corresponding value for kmin as

kmin =
⌊
1 + 1

IRT
(kmaj − 1)

⌋
.

When the dataset is perfectly balanced, i.e. when IRT = 1, the neighborhood sizes of all
elements in T are equal, as kmin = kmaj holds.

We remark that we have also studied the two main modifications of MENNImb, the use of the
two parameters kmin and kmaj and the majority voting for minority elements, separately, but
the fully modified version yielded the best results. In the experiments comparing MENNImb

to MENN, k was set to 7, such that the effect of the separate values for the two classes may
be noticeable.
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5 Optimization algorithms

In this chapter, we consider eight optimization algorithms. The optimization objective is the
quality of the final set S, which can be measured by different criteria, such as its performance
in the classification process or the obtained reduction relative to T .

Within this group, the first set of six methods are the genetic algorithms, which use a fitness
function to represent the optimization objective. A general introduction to their setup, as
well as the general modifications that are shared among them, is presented in Section 5.1.

The first inclination one generally has when working with a genetic algorithm, is to model the
fitness function such that it is suited for the problem at hand and its optimization will yield
an appropriate solution. As such, it may be sufficient to modify the current fitness function
of these methods in order to improve their performance on imbalanced data. Nevertheless,
we propose a number of additional modifications and our experimental verification showed
that the fully modified version of a method is always able to further improve the performance
compared to one where we have only changed the fitness function.

We also study two non-genetic optimization algorithms, RMHC and Explore, which both seek
to optimize a cost function.

5.1 Introduction to genetic IS approaches

In this section, we provide a general introduction to genetic algorithms. We also discuss the
modifications that are shared among the six genetic IS methods studied in this chapter.

5.1.1 Genetic algorithms

A general genetic algorithm finds a solution to an optimization problem by considering an
entire group of candidate solutions at once. This group is called the population and has a
fixed size N . The individual elements in the population are denoted as chromosomes. In the
context of IS, a chromosome represents a subset S ⊆ T . The chromosome is a bitstring of
length |T |. Each bit represents a gene, that can take on the values 0 and 1. When the ith
gene is set to 1, it means that the ith element of T is contained in the set S.

An optimal solution is found by allowing this population to evolve over different generations.
In each generation, new individuals are introduced, which are constructed by applying genetic
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operators, mutation and crossover, on individuals in the current population. These operators
mimic the behavior of real-world evolution. Mutation is a procedure that slightly modifies a
single chromosome. For several methods, mutation occurs by randomly changing the value of
one bit. In particular, a random bit Si will be chosen and when Si = 0 it will be changed to 1
with probability ρ0→1 and in the other case it will be set to 0 with probability ρ1→0. Unless
specified otherwise, the genetic algorithms described below use this type of mutation and the
parameter values are ρ0→1 = 0.001 and ρ1→0 = 0.01. On the other hand, the second genetic
operator, crossover, combines parts of two parents to form their children.

The current individuals producing new offspring are chosen by means of a selection procedure.
In general, current chromosomes that represent better solutions to the problem have a higher
chance of being selected in this procedure. As stated above, the quality of a solution is
evaluated by the fitness function, which is a measure for how well an individual solution
fulfills the objective function.

All six of the genetic algorithms considered in this chapter use the same fitness function,
namely

fitness(S) = α · accS + (1− α) · redS . (5.1)

The term accS represents the accuracy obtained by the kNN classifier on T with S as prototype
set. Its value is determined by leave-one-out validation. The value of k is set to 1 by default.
The reduction redS measures the size of S relative to T and is defined as

redS = |T \ S|
|T |

.

The factor α determines the weights of the two terms. The authors of [15], whose GGA
method will be recalled in Section 5.2, proposed to use α = 0.5 and we have followed this
suggestion.

The six genetic algorithms differ from each other in the way they use and extend the genetic
approach for IS. In the taxonomy of IS methods, they are all listed as wrapper methods, with
a mixed direction of search and hybrid type of selection.

5.1.2 General modifications

As stated in the introduction, a natural thing to do when working with genetic algorithms is
to tune the fitness function to the desired purpose. Currently, all six of the presented genetic
algorithms use the same fitness function (5.1). The new fitness function will also be shared
among them. However, our modifications are certainly not thus restricted and we introduce
new versions of the genetic operators as well.

Fitness function

The fitness function (5.1) has some obvious shortcomings in the context of class imbalance.
It evaluates the classification performance by means of the accuracy and makes explicit use
of the reduction. When dealing with considerable imbalance, small subsets S consisting of
mostly negative instances may still attain high fitness values and thereby constitute valid or
even optimal solutions, according to the current setup of these methods.
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As an example, consider a dataset with 10 positive and 100 negative elements and a candidate
solution S, which is a singleton set consisting of one negative element. When the accuracy
is determined by 1NN, it will be approximately 90%, as all elements will be classified as
negative. The reduction of S relative to T will be about 99%. The combination of these
values yields the fitness value

fitness(S) ≈ 0.5 · 0.90 + 0.5 · 0.99 = 0.945,

where we have used the default value α = 0.5. This is a high value, even though this set will
never be able to classify any positive element correctly.

In a preliminary study, we have compared several candidates for the new fitness function,
which have been proposed in the literature (in [42], [122] and [126]) or have been developed
by ourselves. The comparison was conducted by using the GGA method, which is the most
basic genetic algorithm considered in this chapter. We therefore opted to use this method to
make a decision with regard to the new fitness function by implementing its modified version
GGAImb for all candidate functions. To evaluate the functions, we focused on the obtained
values for g and AUC after the classification process. Our experiments led us to conclude
that

fitness(S) = g −
∣∣∣∣1− 1

IRS

∣∣∣∣ · P, (5.2)

where P is a user-defined parameter, constitutes a good replacement for (5.1). The first term
g is a measure for the classification performance and can be considered to replace the accuracy
used in (5.1). The second term in (5.2) penalizes imbalance in S. A similar term was used in
[42] and its authors proposed to use P = 0.2. We have also set the parameter to this value in
our work. The new fitness function does not explicitly take the reduction into account.

Mutation

We now proceed with our discussion of the modifications made to the genetic operators.
Firstly, the random mutation operator has been modified, such that its behavior depends on
the class to which the randomly selected element belongs. To protect minority elements from
undue exclusion, it should be harder for a minority element to be removed from S and easier
to be included, i.e.

ρmaj0→1 ≤ ρ
min
0→1 and ρmin1→0 ≤ ρ

maj
1→0

should hold.

The new methods ensure that it is as likely for a majority element to be removed as it is for a
minority element to be included and vice versa, where the majority and minority classes are
determined within S and may not necessarily correspond to those in T . They therefore use
two values ρlarge and ρsmall and put

ρmin0→1 = ρmaj1→0 = ρlarge and ρmin1→0 = ρmaj0→1 = ρsmall.

The more imbalanced a chromosome S is, the more the probabilities differ. We use a fixed
user-defined value p ≤ 0.5 and let the computed probabilities satisfy

0 ≤ ρsmall ≤ p ≤ ρlarge ≤ 1.
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To determine the values for ρlarge and ρsmall, we use the IR of the chromosome S in the
formulas

ρsmall = 1
IRS

· p and ρlarge =
(

2− 1
IRS

)
· p,

such that
ρsmall −→

IRS→+∞
0 and ρlarge −→

IRS→+∞
2p.

When IRS = 1, mutation of minority elements does not differ from those belonging to the
majority class. For increasing values of IRS , ρsmall tends to zero, such that minority genes
will not be removed, nor will additional majority elements be added to S. Similarly, ρlarge
tends to 2p, which means that it will be twice as likely as the entered probability p that
minority genes are set to one and majority elements to zero. All these actions result in lower
values of IRS .

As an example, assume p = 0.01, which is the value used in the experimental evaluation:

• IRS = 1: ρsmall = 0.01 and ρlarge = 0.01.

• IRS = 5: ρsmall = 0.002 and ρlarge = 0.018.

• IRS = 10: ρsmall = 0.001 and ρlarge = 0.019.

• IRS = 50: ρsmall = 0.0002 and ρlarge = 0.0198.

In the final situation, the set S is highly imbalanced with IRS = 50. This is reflected in the
small value of ρsmall and the relatively large value of ρlarge, which is almost twice as large as
the entered value p. For instance, this makes it almost twice as likely for a majority gene to
be set to zero compared to the case where IRS = 1.

Selection

In the selection procedure, the IS methods assign a larger probability of being selected to
chromosomes attaining a higher fitness value. Our genetic ISImb methods use a different
order, in which we ensure that individuals with both a high classification performance and
low IR are more likely to be selected and produce offspring. Even though imbalance is already
penalized by the fitness function itself, we still want to explicitly use it in combination with
the classification performance in the selection procedure. The new measure Sel(S) is used to
express this criterion and includes both g and 1

IRS
, as these are the two terms that are also

being used in (5.2). In particular, Sel(S) is defined as

Sel(S) = 2 ·
g · 1

IRS

g + 1
IRS

,

which corresponds to the harmonic mean of g and 1
IRS

. The harmonic mean of two values
tends more strongly to the smaller one, meaning that both inputs should attain high values
for it to be large. In this case, this corresponds to a high value for g and low IR. The
chromosomes are ordered in decreasing order of their values for Sel(·) and the ones appearing
earlier in this sequence have a higher probability of being selected for reproduction.
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Chromosomal representation

Currently, a chromosome S is a bitstring, where Si = 1 means that the ith element in the
dataset is included in the set and Si = 0 means that it is not. The indices in S therefore
correspond to the indices of the elements in the original dataset. In the new methods, we will
reorder the dataset, such that the classes are grouped together.
As an example, a chromosome 1 1 0 0 . . . 1 0 1 0 0 could be transformed into

1 0 . . . 1 0︸ ︷︷ ︸
Minority

0 1 0 . . . 0 1︸ ︷︷ ︸
Majority

.

In this way, we have more control and undesirable effects, like the complete removal of a class,
can be avoided.

Crossover

Some genetic IS methods introduce a novel way to apply crossover, while others follow one
of the standard approaches. In the latter case, the operators themselves mostly remain the
same, but the effect they have changes as a consequence of the alternative representation of
the dataset introduced above. We refer to later sections for further specifications of how the
crossover operators use this new representation.

5.2 GGA

The Generational Genetic Algorithm for Instance Selection (GGA) is one of the methods
proposed in [15]. It follows the general scheme introduced in Section 5.1.1. If Pt−1 is the
population at the start of generation t, the new population Pt is formed by the following
process:

1. Calculate the fitness of all chromosomes.

2. Select individuals for reproduction.

3. Construct offspring from these individuals by mutation and crossover.

4. Construct the population Pt from these children.

Following [15], we have set the population size N to 50 for GGA. In step 2, a selection
procedure is used, wherein chromosomes with a higher fitness value have a higher chance of
being selected. The same element can be selected multiple times. Step 3 applies crossover
by combining parts of the parent chromosomes to form a new chromosome. Crossover occurs
with probability ρc, of which the value was set to 0.6 in our experiments. The original proposal
does not specify the crossover operator. In our experimental work, we have used two-point
crossover, meaning that the parents are divided into three parts and the children alternately
inherit a part from each parent. This operator is illustrated in Figure 5.1.

The algorithm terminates when a maximum number of generations has been performed. As
for other algorithms, this number is not specified exactly, but rather in a maximum number
of fitness evaluations that the method performs. This was set to 10000, as was done for the
other genetic algorithms below, excepting CoCoIS in Section 5.7. The final solution is the
chromosome S with the highest fitness value.
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Crossover

Figure 5.1: Illustration of two-point crossover. On the left, the two parents are randomly
divided in three parts by the two cut-off points. The children are constructed by
interchanging the middle parts in the parents.

GGAImb

Since GGA follows the general scheme of a genetic algorithm, our modifications are limited
to the ones discussed in the Section 5.1.2, apart from an updated crossover procedure as
discussed below.

In GGAImb, we use five-point instead of two-point crossover, where one of the cut-off points
is the chromosomal index separating the classes. The remaining ones are chosen at random,
two in the minority and two in the majority part. This procedure (Figure 5.2) can be re-
garded as an application of two-point crossover on both classes and results in a more prudent
recombination of the genes.

Crossover

︸ ︷︷ ︸
Minority

︸ ︷︷ ︸
Minority

︸ ︷︷ ︸
Majority

︸ ︷︷ ︸
Majority

Figure 5.2: Illustration of five-point crossover as used by GGAImb. The third cut-off point is
always chosen as the division between the minority and majority classes.

5.3 SGA

The Steady-state Genetic Algorithm (SGA) [15], like GGA, follows a standard set-up of a
genetic algorithm. SGA is a steady-state algorithm, which means that, compared to GGA,
the population evolves more slowly. At most two individuals in the population can be re-
placed in each generation. The population can therefore never be entirely replaced by new
chromosomes. Its fixed size N was set to 50 as in [15]. In each iteration, two chromosomes
are used to produce two children, where fitter individuals have a higher probability of being
selected. The offspring replaces the existing chromosomes with the lowest fitness.

70



Chapter 5. Optimization algorithms

Like the GGA algorithm, the algorithm terminates when the maximum number of generations
is reached and the final solution is the chromosome S with the highest fitness.

SGAImb

In SGA, the chromosomes from the current population that are replaced by new individuals
are determined as those having the lowest fitness. SGAImb alters this, such that the same
criterion as the selection procedure is used, i.e. we select the two individuals from the current
population with the lowest value for Sel(·) for replacement.

The selected individuals are not necessarily replaced. From among the selected and con-
structed individuals, two are kept in the new population, namely those attaining the highest
fitness value. We need to ensure that the population is guaranteed to evolve, since it is possi-
ble that the algorithm always selects original individuals instead of constructed ones to keep
in the population. This can be achieved by the addition of a parameter µ, such that, when
the population has not been modified for µ generations, the constructed offspring will auto-
matically replace the selected individuals. Its value has been set to 50 in the experimental
study.

The crossover operator is the same as for the modified version of GGA, as discussed in Section
5.2.

5.4 IGA

In the original proposal [57], the Intelligent Genetic Algorithm for Edition (IGA) was in-
troduced to apply IS and feature selection at the same time. We discuss the version that
only applies IS, as this is the focus of our work. The differences are limited to the fitness
function. When solely being used for IS, the fitness function corresponds to the one defined
in expression (5.1).

IGA follows the general scheme of a genetic algorithm. In each generation, N2 pairs of parents
are randomly formed to each produce two children by crossover. For each pair, the two fittest
individuals among the parents and children will be kept in the population, of which the size
was set to 10 in our experiments. The standard mutation operator is used, but crossover is
achieved by means of Intelligent Crossover (IC).

IC uses two parents to produce two children in an intelligent way. For genes taking on the
same values in the parents, the common value is copied to the children, but for those in which
the parents differ, the best value occurring in one of them is used. Let γ be the number of
genes in which the parents differ, i.e. the Hamming distance between them. For these γ genes,
the value from either parent can be used in their children and the goal is to select the best
one. For each of them, the two possibilities are represented by two levels: 1 and 2. The genes
themselves are called factors. In theory, it would be possible to test all combinations of the
different levels of the factors, but to this end 2γ individuals would need to be constructed
and evaluated. For larger values of γ this approach is intractable, so IC will not construct
all possible children, but only a limited number. The offspring that will be tested, is chosen
by using an Orthogonal Array (OA), a matrix of which the rows are used in the construction
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of the children. The number of rows is set to ω = 2dlog2(γ+1)e. When OAij = l, this means
that in the ith child the jth factor takes on level l. The OA has the following additional
properties:

1. In each column, each value occurs an equal number of times. This means that each
factor takes on each level equally often.

2. For each two columns, each combination of values occurs in an equal number.

3. The rows are uniformly distributed in the space of all possible combinations of the
factors.

4. When columns are removed or swapped, the resulting matrix still satisfies the properties
above.

Further theoretic details on orthogonal arrays, their construction, as well as additional appli-
cations can be found in e.g. [56].

IC constructs an OA of dimension ω× (ω− 1). This implies the construction of ω individuals
that, by the third property of an OA listed above, are uniformly distributed in the space of
all possible children. As a result, they form a representative sample of this group. Each row
in the OA is used to construct one child that is tested. Recall that the common value of genes
in which the parents do not differ are automatically copied to the children. The remaining
genes are filled in with the values from the OA restricted to the first γ columns. IC therefore
tests O(ω) = O(γ) children instead of all 2γ .

IC calculates the fitness yp of each proposed individual p, which is constructed from the pth
row in the OA. For each factor j, the best level is determined by using the main effect Sjk of
the factor j with level k. This value is calculated as

Sjk =
ω∑
p=1

y2
p · Fp, j = 1, . . . , γ and k = 1, 2,

where

Fp =
{

1 if factor j has level k
0 otherwise.

IC also determines the main effect difference MEDj for each factor j, defined as

MEDj = |Sj1 − Sj2|.

The first child is formed by choosing the best level for each factor. In particular, this means
that when Sj1 > Sj2, the value of the first parent is used in the jth gene. In the other case,
the value of the second parent is chosen. Again, for the genes in which the parents do not
differ, the common value is used. The second child is formed analogously, except that for the
factor j with the lowest value of MEDj , the ‘wrong’ level is used. The best two individuals
among the parents and children are selected.
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IGAImb

The choice of the best value for a gene is made based on its MED value. In IGAImb, instead
of selecting the best choice for each gene, we go about this in a different way, by ignoring the
conclusions drawn by the original algorithm in order to obtain more balanced children. Genes
for which the algorithm is less certain about the best value are more likely to be set to the
opposite value compared to positions where the decision was arrived at with more certainty.

The higher the value of MEDj , the more certain we can be that the choice made by the
original algorithm is indeed the best one for gene j. For lower values, we are less certain,
since the difference in using either of the values is relatively less noticeable. For such genes,
our new method is allowed to disregard the conclusion of the original algorithm in favor
of obtaining a better balance between classes. When the gene j corresponds to a minority
instance and the original algorithm concluded that it should be set to 0, this only effectively
occurs with probability 1−pj . In a similar way, when it was concluded to use the value 1 for a
majority instance, the value 0 is used instead with probability pj . The values pj represent the
probability that the original conclusion for gene j is ignored. The lower the value of MEDj ,
the higher these probabilities are. In particular, they are determined using

pj = 1− MEDj

max
i

(MEDi)
, i, j = 1, . . . , γ.

The original algorithm constructs two children and the same happens here, since there are two
ways to determine the majority and minority classes. For the first child, we use the majority
and minority classes of the original set T . For the second child, the majority and minority
class are determined in the chromosome constructed so far, i.e. when the values of G genes
have already been decided upon, the division of the classes among these G elements are used.
The latter approach poses a problem when none of the G genes selected so far have been set
to 1. For as long as this is the case, the original minority and majority classes are used. To
ensure that genes of which the ideal value the algorithm is more certain about are considered
first, they are ordered according to decreasing values of MEDj .

5.5 CHC

In each generation t of the CHC algorithm [15], all elements in the current population Pt−1
are used to construct a population P ′ of N children. We have once more followed [15] and
used 50 for the latter value. The construction of P ′ is achieved by randomly pairing parents.
Afterward, a survival competition is held, where the fittest N individuals of Pt−1 ∪ P ′ are
selected to form the new population Pt.

CHC does not use mutation. The offspring is produced by Half Uniform Crossover (HUX)
crossover, where half of the bits in which the parents differ are randomly interchanged. Not
every pair of elements of Pt−1 can produce offspring. Some restrictions are imposed by a
procedure called incest prevention. Two elements are only able to mate when their Hamming
distance is larger than a given threshold d. In this way, a sufficient amount of diversity is
required of the parents. The value d is initialized as |T |4 , but is decreased when during a
generation no pair of parents can be formed.
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If the fittest element of the population P ′ has a lower fitness than the worst element of Pt−1,
no new individuals are introduced in the generation. When this occurs, d is also decreased
by one, as this allows for more flexibility in the crossover procedure, such that fitter children
may be produced. When d reaches zero, CHC concludes that the population has converged
or that the search does not have sufficient progress. As an attempt to reinforce the search,
the algorithm reinitializes the population. The reinitialization is done by selecting the best
chromosome and randomly changing it in p% of its positions. We used p = 35 for this
percentage in our experiments.

CHCImb

This IS method has already been adapted for imbalanced data in [42], leading to the evo-
lutionary undersampling methods of Section 2.1.1. Nevertheless, we feel that there are still
some places where additional care can be taken when working with imbalanced datasets. In
particular, we modified the crossover procedure, such that it does not yield chromosomes that
correspond to sets S which are too imbalanced. The incest prevention has also been changed,
such that it uses two class-wise thresholds instead of just the single value d. Finally, we also
adapted the reinitialization process.

Crossover

The HUX operator is applied gene-wise, so the value of one gene does not depend on that of
others. In particular, our alternative chromosomal representation of the dataset seems of no
direct use. Nevertheless, there is still something we can do, since the current operator may
yield undesirable effects. As an example, consider two parents that differ in all genes in a
small dataset with |T | = 11, e.g.

1 0 1︸ ︷︷ ︸
Minority

0 1 0 1 0 1 0 1︸ ︷︷ ︸
Majority

and 0 1 0︸ ︷︷ ︸
Minority

1 0 1 0 1 0 1 0︸ ︷︷ ︸
Majority

.

The first three genes correspond to positive elements, while the last eight represent the nega-
tive class. In the construction of their children, five random positions of each parent are used.
This could yield a child

0 0 0︸ ︷︷ ︸
Minority

1 0 1 1 0 1 0 1︸ ︷︷ ︸
Majority

,

which represents a subset S containing no positive instances at all. This situation should be
avoided.

To address this issue, CHCImb splits its crossover procedure into different phases. In a first
step, the majority part is considered and crossover is executed in its original form, yielding
two partially constructed children. Continuing with the construction of the minority part,
we can use the prior knowledge of how many majority elements will be present in the child.
For a minority gene, when both parents take on the same value, this value is copied to the
child as before. On the other hand, when the values differ, we select the value 1 for as long
as there are fewer minority than majority elements in the chromosome. From the moment
perfect balance is achieved, we go back to selecting a random value. This procedure depends
on the order in which the minority genes are considered. We first use the genes set to 1 in

74



Chapter 5. Optimization algorithms

the parent with the highest fitness, in a random order.
For the example above, the first phase could yield a partially constructed child

︸︷︷︸
Minority

1 0 1 0 0 1 0 1︸ ︷︷ ︸
Majority

.

The two parents differ in all minority genes, of which the values are all now set to 1, because
the chromosome already contains 4 majority elements. The final child would therefore be

1 1 1︸ ︷︷ ︸
Minority

1 0 1 0 0 1 0 1︸ ︷︷ ︸
Majority

.

Incest prevention

Incest prevention has been modified as well, such that enough variability within both classes
is ensured. In CHC, by simply stating that two parents should differ in at least d genes,
a pair can be formed of two individuals coinciding in all values corresponding to minority
elements, when the dataset is sufficiently imbalanced. The minority genes of the children are
automatically set to these common values as well.

To address this phenomenon, CHCImb demands that two parents should be sufficiently dif-
ferent in both classes, i.e. they have to take on different values for at least dpos of the positive
and dneg of the negative genes. The values of these parameters are initialized by |Pos|4 and
|Neg|

4 respectively.

CHC lowers the threshold in the incest prevention criterion when no children improving a
member of the current population are produced in a generation. Since we are using two
separate values in the criterion, one for each class, we need to consider which one is lowered
when the population was not able to evolve in a generation. We have decided that only one
value will be lowered, namely the highest one, independently of which class it represents.

Reinitialization

Our final modification regards the reinitialization of the population, in which the best chro-
mosome acts as a seed for the new population. Instead of selecting the one with the highest
fitness, we again use the selection procedure based on Sel(·). Furthermore, at the initializa-
tion of the new population, we ensure that none of the new chromosomes S has IRS > IRT .
This is achieved by one additional step, in which the IR of S is lowered, by alternately setting
majority genes of S to 0 and minority genes to 1. These genes are chosen at random, but
the ones that already took on the desired values in the seed are used first. When S does not
contain any elements at all, we select a random element of each class in this step.

5.6 SSMA

The Steady-State Memetic Algorithm for Instance Selection (SSMA) was introduced in [40].
Similar to the SGA algorithm of Section 5.3, at most two elements from the population,
of which the size was set to 30 in the experiments, are replaced by generated offspring in
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each generation. The produced individuals undergo a local optimization, before it is decided
whether they will replace existing chromosomes in the population.

In each generation two parents are selected for reproduction. The selection method is that of
a binary tournament, where two times two arbitrary elements of the population are chosen
and the fittest one is selected as parent. The children are constructed by crossover, where half
of the genes in the first parent are arbitrarily replaced by those of the second one and vice
versa. The produced offspring undergo mutation, where the value of a random gene is changed
with probability ρm. The next step is to locally optimize the children. This optimization is
certainly executed on a child C, when its fitness value is higher than the lowest fitness present
in the current population. When the fitness of C is lower than this value, optimization only
takes place with a small probability, more specifically 6.25%. In this way the algorithm does
not need to perform superfluous optimizations, since it is less likely that C will be added to
the population when it has low fitness. The produced individuals are indeed only added when
their fitness, possibly after optimization, is higher than the lowest fitness currently attained
in the population. When it is decided to add an individual to the population, it replaces the
current worst chromosome. SSMA terminates when a given number of generations has been
performed.

Local optimization improves the fitness of an individual by increasing its classification perfor-
mance and the reduction with respect to the original set. When S is the chromosome being
optimized, only elements that can be obtained from it by changing the value of a gene from 1
to 0 are considered. This corresponds to the removal of one element from the set represented
by S, which results in a higher reduction. After termination of the local optimization, the
reduction obtained by S will therefore definitely not have decreased. For each gene having
value 1 in S, it is assessed whether the accuracy of the classifier increases when the gene is
set to 0. If this is the case, the change is made. It is possible that several genes are set to 0
during this procedure.

The following steps are performed in the optimization:

1. Let S = {s1, s2, . . . , s|T |} be the chromosome being optimized.

2. R = ∅. This set will contain the positions where a gene has been changed from 1 to 0,
but this did not lead to a sufficient increase in classification accuracy.

3. While there are genes in S with value 1, that are not present in R:

(a) Let S∗ be a copy of S.
(b) Select a random position j, with sj = 1 and j /∈ R.

Set sj = 0 in S∗.
(c) Determine the number of elements accS∗ in T classified correctly by kNN, when

S∗ is used as prototype set.
(d) Determine the number of elements accS in T classified correctly by kNN, when S

is used as prototype set.
(e) Set gain = accS∗ − accS .
(f) If gain ≥ µ, S is replaced by S∗ and R = ∅.

Otherwise, S remains unchanged and j is added to R.
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The value µ in step 3f is a given threshold. If µ ≥ 0, a chromosome is only accepted when it
results in a higher accuracy of the classifier. When µ < 0, individuals can also be accepted
when they correspond to a set S with lower performance. A negative value of µ can be used
to prevent a premature convergence to a local optimum. The value of µ is adapted by SSMA
during the course of the algorithm, starting from the initial value µ = 0. When after a given
number of generations the performance of the best chromosome in the population has not
improved, the threshold µ is increased by one. When the reduction corresponding to the best
chromosome has not increased for a given number of generations, µ is decreased by one.

SSMAImb

In each generation, SSMA constructs two children by crossover, by randomly selecting a
value from a parent for each gene. This procedure can be modified in the same way as HUX
crossover, which was discussed in Section 5.5 on CHC.

In the modified version, as for SGA in Section 5.3, we consider the two constructed children
and the two elements in the current population with the lowest value for Sel(·) and select
the two elements from among these four with the highest fitness for inclusion in the new
population.

The decision criterion to execute the optimization remains solely based on the fitness value,
but the optimization procedure itself has been changed. Our first modification is the use of
the AUC instead of the accuracy in step 3e. Furthermore, instead of setting genes to 0 in
search of improvement in classification performance, we only apply this to genes representing
the majority class. On the other hand, minority genes are set to 1. Some caution is warranted,
because this procedure may give rise to undesired effects when the current majority class in the
chromosome does not correspond to the original majority class. Therefore, the majority and
minority classes are determined based on the chromosome at hand and are denoted by MajS
and MinS respectively. These are not necessarily the same as the majority and minority
classes in T . When a chromosome is perfectly balanced, no optimization takes place. We
note that an empty set S is also perfectly balanced, but in such a situation S is optimized by
adding an arbitrary element of each class. By setting majority genes to 0 and minority genes
to 1, the original IR of S can only decrease, possibly up to a point where a perfect balance is
achieved and the imbalance in the other direction would be created. The optimization halts
prematurely when this occurs.

We present the modified local optimization procedure below.

1. Let S = {s1, s2, . . . , s|T |} be the chromosome being optimized.

2. Determine the majority MajS and minority class MinS in S.

3. While there are minority positions with value 0 or majority positions with value 1, for
which a change in their value has not been tested:

(a) Let S∗ be a copy of S.
(b) Select a random position j, with sj = 0 and sj representing a minority instance or

sj = 1 and sj representing a majority instance, that has not been used before.
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(c) Determine the AUC of kNN, when S∗ is used as prototype set. Denote this value
by AUCS∗ .

(d) Determine the AUC of kNN, when S is used as prototype set. Denote this value
by AUCS .

(e) Set gain = AUCS∗ −AUCS .
(f) If gain ≥ µ, S is replaced by S∗.
(g) If IRS = 1, the optimization is terminated.

In the original algorithm, µ would have been increased by one when after a number of it-
erations the accuracy of the chromosome with the highest fitness did not improve. SSMA
computes the accuracy as an absolute number, i.e. it corresponds to the number of correctly
classified instances. SSMAImb uses the AUC, which is a number in the interval [0, 1], so
increasing µ by one is not appropriate here. We increase its value by 0.001 instead, when the
AUC of the fittest chromosome did not improve in a number of generations.

5.7 CoCoIS

In [44], the authors introduced Cooperative Coevolutionary Instance Selection (CoCoIS).
Cooperative coevolution denotes the simultaneous evolution of partial solutions to a problem,
that can cooperate to form a global solution. The CoCoIS algorithm applies this strategy to
IS. It is a genetic algorithm for IS, but instead of working with one population that evolves
during a number of generations, multiple populations are used.

A training set can be partitioned into disjunctive subsets (strata), after which an IS method
can be applied to the individual strata. The union of the resulting sets is then used as final
set S. A disadvantage of this stratified approach is the fact that every subset has only partial
knowledge of the entire set. For instance, the nearest neighbor of an element in one stratum
is not necessarily the same as its actual nearest neighbor in the whole training set. By using
cooperative coevolution, the different strata are able to work together and the final model
has all the information that is present in the original set at its disposal.

The set T is partitioned into s subpopulations of approximately the same size. In our exper-
imental study, we used s = 5. Within these populations, selectors are constructed as subsets
of the subpopulation. A selector belonging to subpopulation si is represented as a bitstring of
length |si|, where a value 1 in the jth bit means that the jth element of si has been selected.
The value 0 indicates that the element has not been selected. A selector can be considered
as a candidate solution for a subpopulation. Apart from the s populations of selectors, one
additional population of combinations is constructed. Each individual of this population re-
presents a combination of selectors, by selecting exactly one selector from each subpopulation.
A combination is regarded as the equivalent of the union of the different resulting sets from
the stratified approach, but in CoCoIS the different strata are able to cooperate to find the
optimal combination.

During one generation of the global algorithm, MC generations of the population of combi-
nations and MS generations of each population of selectors are completed. We have set both
MC and MS to 10. The number of global iterations was set to 100. The genetic operators
and fitness function differ for combinations and selectors.
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Combinations

Combinations are evaluated by the fitness function (5.1). A steady-state genetic algorithm
is applied to the population of combinations, which means that only two new individuals are
introduced in the population in each generation, indicating a slow evolution. In each gener-
ation, two individuals are selected for the production of offspring. The selection is achieved
by roulette selection, which means that the probability of being selected is proportional to
the fitness value. The selected parents produce children by means of two-point crossover,
which takes place at the selector level, i.e. the selectors that contribute to the combination
are randomly interchanged. The offspring always replaces the two individuals in the current
population having the lowest fitness. Combinations undergo mutation with probability ρm,
where, for a random position i, the selector from the ith subpopulation is replaced by a
random individual of that population. The parameter ρm was set to 0.1 in the experiments.

Selectors

The selectors of subpopulation si are evaluated by the fitness function fs, defined as

fs(S) = we · (1− errS) + wr · redS + wδ · δ, (5.3)

where the weights satisfy we + wr + wδ = 1. The value errS represents the classification
error of kNN applied to si, when the elements of selector S are used as prototypes and redS
corresponds to the reduction of the subset represented by S with regard to the subpopula-
tion si. The final term introduces the cooperation between the strata. The classification
performance of the kNN classifier based on all combinations in which the selector S occurs
is calculated. Afterward the same performance is calculated, but with S removed from all
these combinations. δ is defined as the difference between the two values and is a measure for
the use of the elements S in the global classification. This term stimulates the competition
between the different populations of selectors. When a subpopulation contains few elements
that are useful in the classification, the selectors corresponding to this population have δ ≈ 0,
which results in only a small amount of elements of the population being used in the final
solution.

A genetic algorithm that uses elitism is applied to every population of selectors. Elitism is a
selection method in which the pElit% best elements of the current population are copied to
the new one. The remaining (100− pElit)% elements are constructed by HUX crossover. We
used pElit = 50 in our experiments.

Additionally, two types of mutation are applied. Random mutation, that randomly changes
the value of one bit, takes place with probability ρrand. RNN mutation occurs with probability
ρRNN . This is a local search method, in which genes are set to 0, if the removal of the
corresponding elements does not decrease the accuracy of the kNN classifier. The probabilities
of both types of mutation were set to 0.1.

When each subpopulation has completed a generation, the entire population of combinations
is reevaluated, because selectors that are modified in a subpopulation, are also modified in
all combinations in which they occur. The fitness of such combinations should therefore be
recalculated.
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CoCoISImb

When the minority class is severely underrepresented in the dataset and the number of sub-
populations is high, it is possible that some of them do not contain elements of both classes.
This situation occurs when

s > |Min|,

where the parameter s is the number of subpopulations. Obviously, for small datasets this
scenario is more likely than for larger ones. Therefore, when the user decides on a value s
that would lead to subpopulations solely consisting of majority elements, the algorithm uses
an alternative value for this parameter instead, such that all subpopulations still contain at
least one minority element. To this end, we use

s∗ = min(s, |Min|).

Since CoCoIS can be seen as the intertwining of two genetic algorithms, one being applied to
the subpopulations and one to the population of combinations, we divide our discussion in
two parts as well.

Selector populations

All evaluations take place within a subpopulation. Cooperation and competition between
strata is promoted by the fitness function itself. We replaced the term (1 − errS) in (5.3)
by the AUC, where the application of the classifier is restricted to the subpopulation. The
final term in the fitness function introduces the cooperation between the strata. The modified
fitness function calculates δ in the same way, but again uses the AUC instead of the accuracy.
This value is denoted by δAUC .

The final fitness function for selectors is

fs(S) = we ·AUCS + wr · redS + wδ · δAUC .

For the weights, we use the values introduced in [44], i.e.

we = 0.25, wr = 0.15 and wδ = 0.6.

The random mutation has been modified in the same way as for the other genetic algorithms.
In the application of RNN mutation, the accuracy was replaced by the AUC as evaluation
measure in the removal criterion. Regarding crossover, the HUX procedure is executed, of
which the modifications were discussed in Section 5.5.

Combinations

The fitness function of the combinations has been replaced by (5.2).

The mutation of combinations takes place at the selector level, i.e. mutation at position i of a
combination corresponds to interchanging the current selector from the ith subpopulation by
a random other individual from that population. In the roulette selection, CoCoISImb uses
Sel(·) instead of the fitness.
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Two-point crossover is used. As opposed to what we did in Section 5.2 for GGA, we did
not change this to five-point crossover. The chromosomes in the population of combinations
represent the selectors from the subpopulations and not individual elements from the dataset.
The original operator is kept in place.

5.8 RMHC

We conclude this chapter with a discussion of two non-genetic IS methods. As for the genetic
algorithms, the obvious place to start is to modify the function that is being optimized, such
that it is not hindered by the imbalance in the data.

In this section we consider Random Mutation Hill Climbing (RMHC) [99]. In the taxonomy
of IS methods it is classified as a hybrid wrapper method. It uses a fixed direction of search,
meaning that the cardinality of S is determined at the outset of the algorithm.

In the study of optimization algorithms, a general random mutation hill climbing algorithm
(e.g. [67]) is described by the following scheme:

1. Select a random acceptable solution S of the problem.

2. Repeat for a predetermined number of iterations:

(a) Select a random acceptable solution S∗, that is a neighbor of S.
(b) If S∗ represents a strictly better solution to the problem, S is replaced by N .

A solution is considered as acceptable, if it satisfies certain conditions imposed by the problem
description. To be able to determine S∗, a notion of neighborhood needs to be defined as
well. In a maximization problem, S∗ represents a better solution when it attains a higher
value for the objective function. In a minimization problem, a lower value of the objective
function needs to be attained in order to replace S.

The RMHC algorithm for IS follows this general scheme in search of an optimal set S ⊆ T
with predetermined cardinality m. The neighborhood of a solution S is defined by replacing
a random element in S by a random element of T \S. The objective function is the accuracy
of the kNN classifier on the entire set T , using the elements in S as prototypes, evaluated by
leave-one-out validation. Obviously, this objective function needs to be maximized.

In our experiments, k was set to 1 and the total number of iterations to 10000. For each
dataset, the requested cardinality of S was 10% of the size of T .

RMHCImb

The current objective function uses the accuracy as performance measure, but, as was pointed
out before, this does not constitute a fit measure, when one considers imbalanced datasets.
We resort to the more appropriate AUC measure.

In the original RMHC algorithm, the size of the set S is a parameter, i.e. the user specifies
a percentage p of |T | of elements that are selected. This can easily lead to the sole selection
of negative elements, especially when combined with the original desired optimization of the
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accuracy. In RMHCImb, this has been modified, such that we ensure a certain percentage of
both classes to be selected, thereby fixing IRS beforehand. Based on the requested value of
p, the percentage of selected elements from the majority and minority classes are determined
and are denoted by pmaj and pmin respectively.

RMHCImb strives to obtain a set S that is as balanced as possible, within the restrictions
posed by the dataset and the entered value p. When pmaj = pmin = p, the IR of the resulting
set is the same as the original one, but when pmaj < pmin, it decreases, provided that this
does not mean that the original minority class becomes the new majority class and is even
more overrepresented in S than Neg was in T . In RMHCImb, we never allow Pos to become
the new majority class. To ascertain this property, the condition

pmin ≤ pmaj · IRT (5.4)

needs to be satisfied. When the equality holds in (5.4), using the values pmaj and pmin results
in a perfectly balanced set S. An additional constraint is that the total percentage of selected
instances still equals p, which means

pmin · |Pos|+ pmaj · |Neg| = p · |T |.

This can be rewritten as
pmaj = p · |T | − pmin · |Pos|

|Neg|
. (5.5)

When we combine (5.4) and (5.5), we find

pmin ≤ p ·
IRT

2 + p

2 . (5.6)

Again, when the equality is reached, a set S with IRS = 1 is obtained. However, the value
at the right-hand side is not necessarily smaller than 1, so it does not always yield a valid
percentage. To remedy this, we use

pmin = min
(

1, p · IRT

2 + p

2

)
.

By using this value, we obtain the most balanced set S possible. An additional issue may
be that the right-hand side of (5.6) does yield a valid percentage, but that the corresponding
number of minority instances to be selected is not an integer. Simply rounding of this value
can result in a slight majority of positive instances in S, which we are trying to avoid. Instead,
we always round real values to the nearest integer below them.

As an example, assume that |T | = 110, with |Neg| = 100 and |Pos| = 10, such that IRT = 10.
When the entered percentage is p = 0.1, we find

pmin = min(1, 0.55) = 0.55,

which results in the selection of 5 minority and 6 majority instances. Note that pmin · |Pos| =
5.5 but that we used the floor of this value, since we never allow Pos to become the new
majority class. When p = 0.2 was requested, we would use

pmin = min(1, 1.1) = 1
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and select 10 minority and 12 majority instances.

Finally, in determining the neighboring solutions of a current one, elements are replaced by
other elements from the same class, to guarantee that the values pmaj and pmin are respected.
When pmin = 1, this means that only interchanges between majority instances are tested.

5.9 Explore

Encoding Length Explore, Explore for short, was originally proposed in [14] and a clear
description can be found in e.g. [118]. It uses a hybrid wrapper approach with a mixed
direction of search.

Explore determines the quality of the set S by means of the encoding length heuristic. The
following cost function needs to be minimized:

cost(S) = F (m,n) +m · log2(C) + F (x, n−m) + x · log2(C − 1),

with n = |T |, m = |S|, C the number of classes and x the number of elements of T that are
being misclassified by the kNN classifier that uses the elements in S as prototypes. In the
experimental study, k was set to its default value 1. The function F (m,n) represents the cost
to encode which m of the n available elements are retained in S and is defined as

F (m,n) = log∗
 m∑
j=0

(
n

j

) .
The iterated logarithm log∗(a) is defined as the number of positive elements in the sequence

log2(a), log2(log2(a)), . . . .

The cost function balances the retention corresponding to a set S and the number of elements
that are being misclassified by the kNN classifier when S is used as prototype set. Explore
aims to minimize both.

The terms
F (m,n) and m · log2(C)

are measures for the retention. The first one uses the function F (·, ·) to compare the number
of elements in S and T . The second term weighs the number of elements in S with the number
of classes present in the original set. The weight of this term increases when more classes are
present.

The terms
F (x, n−m) and x · log2(C − 1)

take the number of misclassified elements into account by using the value x. The first one
again calls the function F (·, ·) to compare x to the value n−m, which corresponds to |T \S|.
The second term uses the number of classes present in the original set.

The elements of T are processed in a random order. The first instance is always included in
S and further elements are added when this results in a strict decrease in cost. Afterward, a
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decremental step follows, in which the current set S is reduced by removing instances when
it would decrease the overall cost. Finally, Explore performs 1000 mutations of S, where a
random element of S is removed or a random element of T \S is inserted into S. The change
is only effectively made when it leads to a lower value of the cost function.

ExploreImb

In our work, we are considering binary classification problems, i.e. C = 2. This means

log2(C) = 1 and log2(C − 1) = 0

and the cost function therefore automatically reduces to

cost(S) = F (m,n) +m+ F (x, n−m). (5.7)

The application of Explore tends to result in a high reduction, which was shown in [41] and
confirmed in our own experimental study. The simplified form (5.7) of the cost function
provides an explanation for this phenomenon. Firstly, by including the value m, the function
uses the absolute retention instead of the relative one, which, especially for large datasets,
causes sets S with a low reduction to be assigned a very large cost. It is advisable to use the
relative values instead. The term F (m,n) will also be small for low values of m, since fewer
terms are included in the summation ∑m

j=0
(n
j

)
. We feel that Explore favors the reduction

too much, which may have a detrimental effect on its performance on imbalanced data. In
our proposal, the main new ingredient is the use of two separate cost functions, replacing the
current global cost function, while also ensuring that the terms are scaled in a more suitable
way.

As is clear from its description above, Explore is divided into three main parts. The first
allows S to grow by the stepwise addition of instances to S provided their inclusion does not
increase the overall cost. In this stage, we want S to be able to grow to a reasonable size and
solely focus on the classification performance. The reduction is not taken into account. We
decided to use

cost1(S) = 1−AUCS , (5.8)

where the classification performance of the set S is evaluated by its AUC.

The second part of Explore removes selected instances from S, provided this does not increase
the cost. In the final stage of the algorithm, a 1000 random mutations of the current set,
randomly including or removing an element, are tested. When they lead to a decrease in cost,
the changes they represent are executed. In these two stages, we again consider the global
reduction. As indicated above, the two terms representing the retention are replaced by one
measuring the relative retention. Furthermore, our preliminary experimental work showed
that the original algorithm sometimes removes all minority instances. To avoid this situation
and to additionally ensure that more imbalanced sets S also receive a higher cost, we add
a term corresponding to IRS to the cost function. In conclusion, the resulting cost function
used in the second and third phases of the new algorithm is given by

cost2(S) = retS +
(

1− 1
IRS

)
+ (1−AUCS).
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As a final step, the Explore method performs the 1000 mutations of the solution found so
far. In ExploreImb, these are changed such that this step only considers majority elements for
removal from S and minority elements for addition, while guaranteeing that the imbalance is
not shifted in the other direction. This procedure is executed as follows:

1. The majority and minority classes in S are determined.

2. Select a random element. If it is a majority element and was present in S, remove it.
If it is a minority element and not part of S, include it. In all other cases, S remains
unchanged.

3. Evaluate the cost function cost2(·). If the new set S attains a higher value than the
previous set, the change is undone.

4. Repeat this for a 1000 iterations, unless IRS = 1 is reached, when the algorithm halts
prematurely.

For our final version of ExploreImb, we did not fix the value of k, but allowed it to vary
between datasets. In particular, we used k = |Pos|

2 , while ensuring odd parity of this value.
Keeping this in mind, an important remark regards the initialization of S. The original
Explore method initializes S by one random instance. This is fine when working with k = 1.
When k > 1, a different approach needs to be taken. Indeed, when the dataset is initialized
by one instance while using k = 3, other elements are not added to S, as they only increase
its size to two, meaning that all elements in the datasets still have the same neighbors in S.
AUCS therefore remains equal to 0.5, so the element under consideration is not selected. We
remedied this situation by initializing S with k instances instead. We chose to initialize S as
balanced as possible, meaning that we select

⌊
k
2

⌋
minority and

⌈
k
2

⌉
majority instances, if the

dataset allows it.
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6 Reachable and Coverage based methods

In this chapter we study seven IS methods: CPruner, DROP3, HMNEI, ICF, MoCS, MSS and
NRMCS. As before, these methods have not been blindly selected, but have certain aspects in
common. In their selection or removal criteria, they all assess the use a particular candidate
element has for the global classification. This is achieved by considering the sets of elements
upon whose classification the instance can have an immediate influence.

A number of the methods studied in this chapter use the nearest enemy NEx and two sets
Reachable(x) and Coverage(x). The nearest enemy of x is the closest element belonging to
a different class than x, i.e.

NEx = argmin
y,l(y)6=l(x)

d(x,y).

This definition implies that all elements for which the distance to x is strictly smaller than
d(x, NEx) necessarily belong to the same class as x itself. The nearest enemy is used in the
definition of Reachable(x). Since this set is defined as

Reachable(x) = {y |y ∈ T \ {x}, d(x,y) < d(x, NEx)}},

it consists of elements located closer to x than its nearest enemy and therefore belong to the
same class. These elements can contribute to a correct classification of x. The second set is
defined as

Coverage(x) = {y |x ∈ Reachable(y)}

and contains elements for which x itself can contribute to a correct classification. Figure 6.1
presents how Reachable(x) and Coverage(x) are determined for a given element x. We
remark that different authors use different names for these sets, but it should be clear from
their definitions which of the above they coincide with or relate to.

Based on these sets, an algorithm is able to model the usefulness of elements for the global
classification. Any negative effect an element can have on the classification of others is not
directly taken into account. It may very well be that |Coverage(x)| is high, meaning that
x contributes to a correct classification of a lot of elements of its own class, but that it
also takes part in the misclassification of several elements of the other class. To model this
behavior, we define two new sets Enemies(x) and V ictims(x), which are natural counterparts
of Reachable(x) and Coverage(x). They are visually presented in Figure 6.2.
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x

NEx

Reachable(x)
x

Coverage(x)

Figure 6.1: Illustration of the Reachable(·) and Coverage(·) sets. Each circle contains in-
stances located closer to the center element than its nearest enemy.

x

NNx

Enemies(x)
x

V ictims(x)

Figure 6.2: Illustration of the Enemies(·) and V ictims(·) sets. Each circle contains instances
located closer to the center element than its nearest same-class neighbor.

We use NNx, which is the nearest same-class neighbor of x and is defined analogously as
NEx, i.e.

NNx = argmin
y 6=x,l(y)=l(x)

d(x,y).

The new sets are

Enemies(x) = {y |y ∈ T \ {x}, d(x,y) < d(x, NNx)}}

and
V ictims(x) = {y |x ∈ Enemies(y)}.

Enemies(x) contains elements from a different class located nearer to x that its nearest
same-class neighbor. For noisy elements, for instance, the cardinality of this set is expected
to be high. V ictims(x) consists of elements which may be misclassified by x. In the following
sections, each describing one IS method, we show how this set can be used to e.g. select
majority instances that are not overly harmful for the classification of minority instances.

By means of the two new sets and other adaptations, the main shared modification for the
seven IS methods discussed in this chapter is the explicit consideration of both the positive
and negative effect elements may have on the classification process. As such, a better-advised
selection of elements is achieved.
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Apart from the shared use of the Reachable(·) and Coverage(·) sets, some of the methods
considered in this chapter also apply an initial noise filtering on the data before the main
method is executed, wherein noise is removed by an application of ENN (see Section 4.6). This
preliminary step itself may already be the chief culprit with regard to the inferior performance
of the IS method, as minority elements can easily be considered noisy. For ISImb methods
performing this step, the execution of ENN is restricted to the majority class, removing noisy
negative elements by means of the same elimination criterion as ENN.

6.1 MSS

The Modified Selective Subset technique (MSS) was introduced in [5]. It is an incremental
condensation method and a filter. Its developers use the term relative neighborhood Lx to
denote Reachable(x). Elements of this set are called related neighbors. The inverse relative
neighborhood Sx coincides with Coverage(x).

The MSS algorithm constructs a subset S ⊆ T , such that it contains, for each element
x ∈ T , the element from Lx that is nearest to NEx. This choice is made to ensure a good
approximation of the true decision boundaries. After the execution of the algorithm, every
element of T is located closer to an element of S of the same class than to any element of T
of a different class. This implies the correct classification of T by 1NN, when S is used as
prototype set, such that S is a consistent subset of T .

In its execution, MSS sorts the elements of T in ascending order of the distance to their
nearest enemy, to favor the selection of boundary elements. Afterward, elements of the sorted
sequence are added to S when there are elements in their inverse relative neighborhood that
are not yet being classified correctly by 1NN. This condition is used to avoid the addition of
redundant elements to S. An element x only influences the correct classification of elements
of Sx. To this end, when all elements of Sx are already classified correctly, x is not added to
S, since this could only affect the correct classification of elements of Sx.

MSSImb

As we explained in the introduction, any negative effect an element may have on the classifi-
cation of elements of the opposite class is not modeled directly by solely using the relative and
inverse relative neighborhoods. In particular, by explicitly sorting the elements in ascending
order of the distance to their nearest enemy, majority elements located near to minority in-
stances have a higher probability of being selected. Unfortunately, these elements are also
more likely to decrease the accuracy on the minority class compared to majority elements
located slightly further from the decision boundary.

New order on T

Somehow, we need to ensure that safe majority instances are selected. We define a sorting
score s(·) for all elements. The initial sorting is based on these scores instead of the distances
between elements and their nearest enemy. For any element x, its score takes into account
the effect the presence of x in S would have on the classification of elements of the other
class. The algorithm compares the sizes of V ictims(x) and Sx, increasing the size of the set
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containing positive instances by a factor IRT , such that a fairer comparison between classes
is achieved. This value serves as a penalization term and increases the sorting score, resulting
in a later appearance of x in the sorted sequence, when x leads to a relatively high amount
of misclassifications. To be precise, the sorting score of an instance x is determined as

s(x) =

d(x, NEx) ·
(
1 + IRT ·|V ictims(x)|

|Sx|+1

)
if x ∈ Neg

d(x, NEx) ·
(
1 + |V ictims(x)|

IRT ·|Sx|+1

)
if x ∈ Pos.

Apart from the new order in which to consider the elements, we also looked into the modifi-
cation of the instance selection criterion itself, by comparing the percentage of misclassified
elements of Sx to the percentage of correctly classified elements from V ictims(x) and using
this knowledge to decide on the addition of x to S. Nevertheless, a preliminary experimental
evaluation showed that limiting the modifications to the new ordering on the elements yielded
better results and the final of MSSImb version is therefore defined as such.

Condition on IRS

As a final step of the new algorithm, the IR of S is calculated. When it is larger than the
original IR of T and the negative class is still the majority, additional positive elements are
selected, until IRS ≤ IRT . These elements are added using the order imposed by the scoring
function s(·). In case the positive elements form the majority in S, negative elements are
added until IRS = 1.

6.2 DROP3

The Decremental Reduction Optimization Procedure 3 (DROP3) is one of the methods pro-
posed in [118]. As its name suggests, it is a decremental method. It is further classified in
the taxonomy as a hybrid filter. The original proposal introduces the set of associates of x,
consisting of the elements which have x as one of their k nearest neighbors. This set is related
to Coverage(x), but they do not coincide, as the latter only contains elements for which x
can contribute to a correct classification, while the set of associates does not make such a
distinction.

DROP3 is an extension of the DROP2 algorithm, which was also introduced in [118]. In
DROP2, the set S is initialized as T and its elements are sorted in descending order of the
distance to their nearest enemy. Afterward, for each element x, it is verified whether at least
as many of its associates in T would be classified correctly by kNN when the set S\{x} instead
of S is used as prototype set. If this is the case, x is removed from S. In the experimental
study, we have used the 1NN classifier.

The initial sorting of the elements is executed to ensure that elements far from the decision
boundaries are considered first. This should lead to a higher removal of redundant elements
lying at the centers of homogeneous regions, which is a desirable property. One problem of
this order is that it is easily perturbed by noise on the data. When a noisy element occurs
in the center of a homogeneous region, the surrounding elements are regarded as boundary
points and are only considered for removal in a later stage of the algorithm. At that point, it
is possible that they can not be removed anymore, while ideally they would be.
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The extension to the DROP3 algorithm solves this last problem. In a preliminary step, the
noise in T is removed by applying ENN. Afterward, DROP2 is executed on the reduced set.

DROP3Imb

The original DROP3 method applies ENN in an initial step to remove noisy elements. As
discussed in the introductory section, DROP3Imb is only allowed to remove majority instances
in this step.

New order on T

As noted above, the sorting of the elements in the main body of the algorithm was a measure
in the initial proposal to ensure a higher removal of redundant elements lying at the centers
of homogeneous regions. In the setting of imbalanced data, a secondary goal should also be
to avoid the selection of majority instances that cause the misclassification of many minority
elements. Therefore, we do not order the elements based on the distance to their nearest
enemy, but use the same ordering as was used by MSSImb in Section 6.1. Obviously, we
need to reverse this order, as MSSImb places safe majority elements at the beginning of the
sequence.

Removal criterion

The removal criterion has been changed, but this was done differently for the two classes.
The criterion for minority instances is relaxed by demanding a strict increase in the number
of correctly classified associates. This may appear to be a small change, but it has already
proven its worth in a similar modification made to RNN in Section 4.5.

The new criterion for the majority class is more involved. When a majority instance x only
has positive associates or it does not have any at all, the instance is removed without question.
When all associates belong to the negative class, the original removal criterion is used. In all
other cases, x has associates of both classes. Within the associates set, we can keep track
of these two types of instances separately, i.e. positive associates and negative associates. It
is guaranteed that both of these sets are non-empty. Our new criterion is motivated by the
following example.

Assume x ∈ S is a negative instance and has 4 negative and 2 positive associates. Using S
as prototype set, one of the positive associates is misclassified, but all others are classified
correctly. When S \ {x} is used, both positive neighbors are classified correctly, but 2 negative
ones are not.

In this example, the original DROP3 method would retain x, since fewer of its associates
would be classified correctly after its removal. However, when considering the effect on the
positive associates, it seems like there may also be certain benefits in removing it. In order
to allow for the removal of majority instances exhibiting this behavior, we consider the effect
on the two types of associates separately.

Removing a majority element can decrease the number of correctly classified negative asso-
ciates, but increase this number for its positive associates. The original algorithm removes
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the element under consideration when the former negative effect does not outweigh the latter
positive one. To be precise, a majority instance x is removed from S when

(N+,without −N+,with) + (N−,without −N−,with) ≥ 0,

where Nl,with and Nl,without denote the number of correctly classified associates of class l before
and after the removal of x. As was hinted at by the example given above, this condition is
weakened in our new version, resulting in an easier removal of majority elements when doing
so has a considerable positive effect on its positive associates. DROP3Imb removes majority
instances when

IRT · (N+,without −N+,with) + (N−,without −N−,with) ≥ 0

holds. This criterion weakens with increasing values of IRT , resulting in an easier removal
of majority instances. When the set is perfectly balanced, i.e. when IRT = 1, the new and
original criteria coincide. Looking back at our example, x would be removed when IRT ≥ 2.

Condition on IRS

As for MSSImb, elements are not removed immediately, but merely receive a mark when they
satisfy the removal criterion. In the final step of the algorithm, we ensure that S is not more
imbalanced than T and that the positive class does not become the absolute majority. The
necessary marks are undone starting from the end of the sorted sequence. When additional
negative elements have to be reselected after that, the ones marked by ENN are used in a
random order.

In a preliminary experimental study, we studied the stepwise construction of DROP3Imb by
first restricting the modifications to the new version of the initial noise filtering. Afterward,
to verify whether the relatively small change in the removal criterion for minority instances
is already sufficient to improve the performance of DROP3, we made the appropriate ad-
justments to this criterion for the minority class and kept the original criterion in place for
majority elements. Finally, we constructed the fully modified version, which yielded the best
results.

6.3 HMNEI

Hit-Miss Network Iterative Editing (HMNEI) was introduced in [76] as a hybrid wrapper
approach for IS, performing a batch removal of elements from T .

The algorithm uses a directed graph to represent a relation between elements of the set T .
The graph is called a Hit Miss Network (HMN) of T and is defined as the directed graph
G = (T,E) with vertex set T and edge set E, where

E = {(x, NN(x, l)) | x ∈ T, l ∈ L},

with L the set of classes present in T and NN(x, l) the nearest neighbor of x belonging to
class l. An edge is present between x and y when y is the nearest neighbor of x having class
l(y). The definition implies that there are |L| edges originating from x. Since the endpoint
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of an edge is a nearest neighbor of the origin, it can contribute to the classification of this
instance.

Based on the HMN, [76] introduced some new definitions. An element y such that (y,x) ∈ E
and l(x) = l(y), is called a hit of x. When l(x) 6= l(y), it is a miss of x. Figure 6.3 illustrates
these notions. The hit-degree and miss-degree of an element are defined as its total number of
hits and misses respectively. The hit-degree expresses how many elements of class l(x) have
x as their nearest neighbor and a higher value means that x is located nearer to the center
of its class. A high miss-degree indicates that x is surrounded by a lot of elements belonging
to a class different from l(x), which implies that x is a noisy element or that it is located
near the decision boundary. The algorithm compares the hit- and miss-degree of x to decide
whether or not to remove the element from T .

x

y1 y2

y3 y4

Misses of x

Hits of x

Figure 6.3: Illustration of hits and misses of x in the HMN.

HMNEI iteratively applies the HMNE algorithm, until the accuracy of the 1NN classifier on
the entire set T , when the current set S is used as prototype set, decreases. HMNE is a
method that uses four heuristics to decide whether an element of T should be removed. The
first rule adds elements of T to a set M of marked instances. The three other rules can undo
marks by removing elements from M . At the end of the algorithm, the set of prototypes is
determined as S = T \M . The algorithm aims to remove elements having a higher miss-
than hit-degree, but the heuristics are formulated slightly differently to take the possibility
of imbalanced datasets into account. We list them below.

H1: The hit- and miss-degree of an element x are compared with weights according to the
class distributions. The weight wl is defined as

wl = |{y ∈ T | l(y) = l}|
|T |

and represents the fraction of elements of T belonging to class l.
An element x is marked when

wl(x) ·Miss(x) + ε > (1− wl(x)) ·Hit(x).
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The parameter ε ∈ [0, 1] is fixed at the beginning of the algorithm. Higher values of
ε lead to a higher number of marked elements. In our experiments, the value 0.1 was
used as proposed in [76].

H2: The removal of many elements of the same class is not ideal, since this can create an
imbalance between classes. When the number of unmarked elements from a class l in the
set T becomes too small, the mark of all elements of that class having a positive indegree
in the HMN is removed. The threshold suggested in [76] is four, i.e. the presence of a
class is considered too small when there are less than four unmarked elements of this
class in T .

H3: When all classes would have the same size |T ||L| , upper bounds on Hit(x) and Miss(x)
are given by

Hit(x) ≤ |T |
|L|
− 1 and Miss(x) ≤ (|L| − 1)2 · |T |

|L|
.

This shows that the upper bound on Miss(x) is linearly proportional to |L|, while the
upper bound on Hit(x) is inversely proportionate to it, which implies that Miss(x)
is more likely to increase quicker in the presence of a higher number of classes in T ,
resulting in more elements being marked by rule H1. The heuristic H3 is based on this
observation, even though the initial assumption of the equal class sizes may not hold in
general. When |L| > 3, H3 removes a mark from elements that have a relatively low
miss-degree. The rule applies for an element x when its indegree in the HMN is positive
and

Miss(x) < |L|2 .

We remark that this heuristic is never applied in our experimental work, as all datasets
consist of only two classes.

H4: When an element x has a high hit-degree, it means that it is the nearest neighbor of
many elements of its own class. In this case, x is located near the center of its class
and has a considerable positive effect on the performance of the 1NN classifier. Such
an element should not be removed from T , so if it has been marked by H1, the mark is
undone. This happens when

Hit(x) > 0.25 · |{y ∈ T | l(y) = l(x)}|.

HMNEIImb

HMNEI already explicitly takes the possibility of imbalance between classes into account. It
does so in a way similar to what we are trying to achieve in the ISImb methods proposed in
this chapter, i.e. by modeling both the positive and negative effect the selection of an element
may have on the global classification. Our modifications are minor, but our experimental
study shows that they can further improve the algorithm.

The initial marking of instances is kept in place. In H2, fixing the value below which the
class size is considered too small feels slightly artificial, as it is the same for all datasets. This
heuristic is specifically put in place to not create or worsen the imbalance in the dataset.
In HMNEIImb, it is the final heuristic to be executed in each iteration. As we have done
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for several other algorithms, we simply guarantee that the imbalance in the new set S does
not exceed that of the resulting set of the previous iteration. This implies that the original
imbalance is not exceeded either. If necessary, additional minority instances are added in
decreasing order of their indegree. Additionally, we use the geometric mean g in the overall
termination criterion.

We briefly note that we tested both the accuracy and g to act as the evaluation measure
in the termination criterion in a preliminary study. No considerable differences in results
were observed. The results using g were slightly better, which is why we decided to use it in
the final version. Also, the fully modified version yielded higher results compared to merely
replacing the accuracy by g in the termination criterion and keeping the original heuristic H2.

6.4 NRMCS

The Noise Removing Minimal Consistent Set method (NRMCS), a decremental, hybrid filter,
was introduced in [113]. It performs noise removal during the entire course of the algorithm,
as opposed to some other IS methods, which execute an edition algorithm, for instance by
application of ENN, in a preliminary step to remove noise on the data. Examples of methods
using the latter approach are DROP3 (Section 6.2) and ICF (Section 6.5).

NRMCS lets elements cast votes on each other and determines the significance of an element
based on the number of votes it received. The voting is based on the Nearest Unlike Neighbor
(NUN) distance, which is the distance of an element to its nearest enemy. An element x
casts a vote on each element to which the distance is smaller than its NUN distance, i.e. on
all elements of Reachable(x) ∪ {x}. This implies that an element can only vote on elements
belonging to the same class. When an element casts at least one vote on an element different
from itself, which is the case when its nearest neighbor belongs to the same class, it is registered
as voter.

Noise filtering is performed by removing elements which are not registered as voters nor are
voted upon by an element different from itself. Redundant elements are removed as well, as
a consequence of a strategic selection process. When an element y receives a vote from x,
this means that x would be classified correctly by the 1NN rule when y is added to S, since
y belongs to the same class as x and is located closer to it than its nearest enemy. The more
votes y receives, the more elements would be classified correctly after its selection. Keeping
this in mind, NRMCS always selects the element with the highest number of votes and adds it
to a new set S. All voters that voted for this element, are now classified correctly and should
not have any weight in the further selection of elements. Hereto, for all other elements on
which they voted the number of votes is decreased by one. Additional instances are selected
as long as more than ε% of the elements of T are being classified incorrectly. We have used
ε = 0.2.

It is possible that even more elements of the resulting set S can be removed, so the algorithm
is applied iteratively until no further reduction is obtained. Candidates for selection in each
iteration are elements which either belonged to the set S in the previous iteration or can be
added without leading to a misclassification in T .

To summarize, we present the schematic representation of NRMCS below:
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1. Calculate the NUN distance for all elements and execute the voting mechanism that
was discussed above.

2. Construct the set T ′ consisting of elements that

(a) belonged to set S in the previous iteration, or
(b) can be added without leading to a misclassification in T .

In the first iteration T ′ is initialized as T .

3. Initialization: S = ∅.

4. Noise filtering: remove elements from T ′ that are neither a voter nor voted upon by an
instance different from itself.

5. Determine the element x having the highest number of votes and the set V of all
elements that voted on x.

6. Add x to S.

7. For all voters v ∈ V :

(a) Determine all elements that were voted upon by v.
(b) Decrease the number of votes of these elements by one.

8. Repeat steps 5-7 until the number of misclassified elements is less than ε% of T .
This results in a candidate set S.

9. Repeat steps 1-8 for as long as the new set S contains fewer elements than the one of
the previous iteration.

NRMCSImb

We now proceed with the discussion of our modifications to the NRMCS algorithm. One
obvious place to start, is the restriction of the noise removal to the majority class, such that
minority instances are never regarded as noise. We have also modified the other defining
aspects of this method, as discussed below.

Voting procedure

In NRMCSImb, the voting procedure is split in two, such that it can model both the positive
and negative influence of an element on the classification of others. An element x still casts
one vote on each element of Reachable(x), but, in a separate polling, it also casts one vote
on all elements of Enemies(x). The definition of a voter remains unchanged, i.e. an element
is registered as voter when it casts a first-category vote on at least one other element.

For each candidate for selection, two voting results are now available: Vcorr represents the
number of elements it can classify correctly by the 1NN rule and Vincorr represents the number
of elements it can misclassify. The addition of an element with a high value for Vincorr is
certainly not desirable.
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Selection procedure

When selecting elements for addition to S, the algorithm does not simply choose the element
with the highest number of votes in the first category, but considers the trade-off between
Vcorr and Vincorr. To this end, the selection score of an element x is defined as

s(x) =


Vcorr

IRT ·Vincorr+1 if x ∈ Neg

IRT ·Vcorr
Vincorr+1 if x ∈ Pos.

When the voting results correspond to the classification of minority instances, their values
are amplified by IRT , to account for the imbalance in T . NRMCSImb selects the element with
the highest value for s(·).

The effect of this modification is illustrated in Figure 6.4. The negative element marked in
red receives a first-category vote from all negative elements including itself, so Vcorr = 6.
However, due to its close location to the positive class, it may not be prudent to select it after
all. Indeed, it is part of the Enemies(·) set of all positive instances, yielding Vincorr = 3. On
the other hand, the green negative instance also has Vcorr = 6, but, since none of the positive
instances is threatened by it, Vincorr equals zero. This instance feels like a better choice for
addition to S. This is reflected in the selection scores, namely

s(red) = 6
7 < 6 = s(green).

In the original version, both instances would have had an equal probability of being selected.

Figure 6.4: A small dataset with IR = 2.

Updating the votes

The original algorithm updates the voting information after an element has been selected.
This needed to be modified to take both voting categories into account. Currently, votes of
all elements that voted on the newly selected element are discarded. As explained above, this
is motivated by the fact that these elements are now classified correctly and should not have
any weight in the further selection. This procedure is kept in place for Vcorr.

Vincorr is updated in a different, but dual, way. When a new instance is added to S, elements
to whose Enemies(·) set it belongs, should now receive more weight in excluding candidates
for selection. All elements on which they voted in the second category receive an additional

97



Chapter 6. Reachable and Coverage based methods

vote, making it less likely for them to be included in a later iteration, even when they may
still have a high number of votes in the first category as well.

Termination criterion

Currently, instances are added to S until the number of misclassified elements is less than
ε% of T . This is not the most prudent heuristic to apply when working with imbalanced
datasets. For instance, when ε% is set to its default value 0.2, it allows for a misclassification
of one fifth of the dataset. When IR ≥ 4, this may therefore result in the misclassification of
the entire minority class. In NRMCSImb, this parameter is used class-wise, i.e. at most ε% of
each class is allowed to be misclassified by a candidate prototype set.

We studied the effect of the iterative application and it was clear that limiting NRMCSImb to
one run instead of allowing it to further reduce the set S resulted in considerable higher values
for both g and AUC. This coincides with an earlier remark that we made when studying the
genetic algorithms, where we also chose to avoid the explicit inclusion of the reduction in the
fitness function. Allowing NRMCSImb to execute multiple iterations on imbalanced datasets
may cause it to favor reduction too much, up to the point where an overly large amount of
minority instances is removed.

6.5 ICF

Iterative Case Filtering (ICF) is a hybrid filter method that was introduced in [10]. The
algorithm makes direct use of the Reachable(·) and Coverage(·) sets. It marks an element
x ∈ T if

|Reachable(x)| > |Coverage(x)|,

since this indicates that x is less useful for the global classification. Marked elements are
removed in batch when the entire set has been processed. The method is applied iteratively
until no additional elements are removed from S during an entire pass.

One problem of this approach is that it protects noisy elements. These elements are indeed
less likely to be removed, since |Reachable(x)| is often small. ICF solves this problem, similar
to DROP3, by applying the ENN algorithm in a preliminary step to remove noise on the
data.

ICFImb

Like DROP3, ICF sets out by applying ENN on the original set T . In ICFImb, ENN is
restricted to the negative class. Our further modifications are described below.

Additional marks

An additional edition-like step is introduced immediately after the application of ENN. This
step marks majority elements that are located near the decision boundaries. While they may
not necessarily be noisy, they are more prone to misclassify minority instances and have been
denoted as unsafe earlier in this work. These instances are identified by

IRS · |V ictims(x)| > |Coverage(x)|, (6.1)
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where S represents the reduced set after application of ENN.

The amplification by IRS on the left-hand side of (6.1) was also applied in Section 6.4 on
NRMCS. The definition of IRS implies that we can expect to find IRS majority instances
for each minority element in S. By multiplying the size of V ictims(x) by IRS , its elements
receive an appropriate weight in deciding whether a majority instances does more harm than
good.

This step is not included in the iterative application of ICFImb. In a preliminary study, we
did assess whether it would increase the performance of the algorithm if we executed the
additional edition in every iteration, but restricting it to the first run, immediately following
the initial noise filtering by ENN, yielded better results.

Condition on IRS

In the batch removal of marked elements, we only remove instances up to the point where
the new set S becomes more imbalanced than the set constructed in the previous iteration
or until the positive elements become the absolute majority. Determining which marks are
ignored can easily be based on the elimination criterion itself. For a marked element x,

|Reachable(x)| > |Coverage(x)|

holds. The higher the difference in cardinality between the left and right hand side, the more
certain we can be that x should be removed. Marked elements for which this difference is
larger are therefore removed first.

We verified whether the restriction posed to ENN suffices to boost the performance of the
original method. However, the fully modified version showed a further improvement, by means
of the addition of the condition on IRS and the new edition step.

6.6 CPruner

CPruner was introduced in [129] and is classified as a decremental filter in the taxonomy of IS
methods. This hybrid algorithm removes both noisy and redundant elements from T . The C
in CPruner refers to this combination. For the removal of redundant elements, some caution
is warranted: a redundant element should only be removed if it is deemed non-critical by the
algorithm, i.e. when its removal does not negatively affect the classification of other elements.

Following [129], CPruner uses the sets k–reachability(x) and k–coverage(x). Their names
echo the ones used throughout this chapter, but they do not coincide with them. The set
k–reachability(x) simply contains the k nearest neighbors of x, meaning

k–reachability(x) = {xi |xi ∈ T and xi is one of the k neighbors of x}.

Similarly, k–coverage(x) consists of those elements having the same class as x and that have
x as one of their k nearest neighbors, such that

k–coverage(x) = {xi |xi ∈ T, l(xi) = l(x) and x ∈ k–reachability(xi)}.
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In our experiments, we have used k = 3 as in [129]. Note that there is no mention of the
nearest enemy in the definitions given above.

In order to distinguish between elements, three different labels can be assigned to them:

Superfluous: x is classified correctly by its k neighbors, meaning that the majority of the
elements of k–reachability(x) belong to class l(x).

Noisy: x is not superfluous and satisfies |k–reachability(x)| > |k–coverage(x)|.

Critical: the k–coverage(x) set contains at least one element y that is misclassified by
k–reachability(y), either with or without including x itself in the latter set. Since
the elements of k–coverage(x) have by definition the same class as x, x is vital to
the correct classification of these elements. When something goes wrong during this
classification, x should definitely not be removed from T .

CPruner removes all noisy elements. Superfluous elements are removed as well, provided they
are not critical. The method initializes S as T and first determines the k–reachability(·) and
k–coverage(·) sets for all elements. All noisy instances are removed from S, while updating the
appropriate k–reachability(·) and k–coverage(·) sets. This means that when x is removed, it
is removed from the k–reachability(·) set of all elements in k–coverage(x), after which a new
neighbor is found for such elements. When present, x is also removed from the k–coverage(·)
sets of its nearest neighbors. After the noise removal, the reduced set S is sorted according to
the rules discussed below. Each element x ∈ S labeled as noisy or superfluous and non-critical
is removed. The k–reachability(·) sets of all elements in k–coverage(x) are always updated.

The order of the removal of elements is important, since the elimination of an element influ-
ences the imposed criteria on the removal of later instances. Elements located in the interiors
of homogeneous regions should be considered first and those from the decision boundaries in
a later stage. The latter are indeed more important to the global classification and should be
removed with more caution. The primary order of the elements is based on how many of their
k nearest neighbors belong to the same class as the element itself. The instances are sorted
in increasing order of this number. In case of ties, elements located closer to their nearest
enemy are placed first.

CPrunerImb

Instead of fiddling with the definition of the three labels, we introduce a new one, harmful,
which models the negative effect an element can have on the classification of instances of the
opposite class. The two stages in which CPruner is inherently divided, one focusing on noise
filtering and the other on the removal of both redundant elements and the remaining noise,
are modified as well.

Harmful instances

Both majority and minority elements can be labeled as harmful, but the criteria to do so
differ and depend on the imbalance in the dataset. We impose a condition analogous to the
one used by ICFImb in Section 6.5, but as the definition of k–coverage(x) is not the same as
that of Coverage(x), it stands to reason that we should alter V ictims(x) in a similar way.
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We define the set k–victims(x) as consisting of those elements belonging to the opposite class
of x and having x as one of their k nearest neighbors, i.e.

k–victims(x) = {xi |xi ∈ T, l(xi) 6= l(x) and x ∈ k–reachability(xi)}.

Using this definition, a majority instance x is assigned the new label when

IRT · |k–victims(x)| > |k–coverage(x)|

and a minority instance when

|k–victims(x)| > IRT · |k–coverage(x)|.

First phase of CPrunerImb

CPruner sets out by removing all noisy instances. In CPrunerImb, we first remove all harm-
ful elements. Afterward, we recalculate the sets k–reachability(·) and k–coverage(·) for all
instances and proceed with the removal of noise in the same way as the original algorithm.

We stress that elements of both classes can be considered as noise and that no distinction
is made in the criteria to do so. In the second part of the definition of a noisy element, the
cardinality of the k–coverage(·) set is compared to |k–reachability(·)|, which equals the fixed
value k. We feel that the first step of removing harmful instances levels the playing field
between classes, as it is likely to increase the sizes of the k–coverage(·) sets, for minority
elements in particular. As such, they may be protected from unwarranted noise filtering.

Second phase of CPrunerImb

In the second phase of the original algorithm, the remaining elements are sorted and removed
when they are either superfluous and non-critical or noisy. The new method does the same,
but it is never allowed to remove a class in its entirety. The removal of harmful instances
is limited to the first phase. Similar to our experimental work on ICFImb, we studied the
effect of removing harmful instances in the second phase as well. Nevertheless, limiting their
removal to the first stage provided considerably better results.

As opposed to some previous methods considered in this chapter, the order in which to
consider the elements has not been changed. Before, we wished to ensure that unsafe majority
elements would be considered for removal first, but CPrunerImb should already have removed
these before it reaches the second phase.

Condition on IRS

As we did for many other of our ISImb methods, we also place a condition on the degree of
class imbalance in the final set S, requiring it to not be more imbalanced than T and to not
display an overrepresentation of positive elements.
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6.7 MoCS

Model Class Selection (MoCS) was described in [11] in the context of selecting the best
classifier for a certain task. MoCS does not use the Reachable(·) and Coverage(·) sets, but is
included in this chapter, because it also attempts to model the use of individual elements for
the global classification and removes elements which are deemed to worsen the classification
performance. It is an edition algorithm and a filter.

Each instance x ∈ T is classified with the kNN rule using T \ {x} as prototype set. In
doing so, for all elements, a record is kept of how often they contributed, as one of the k
neighbors, to a correct or incorrect classification. Afterward, all elements that contributed
more often to an incorrect classification than to a correct one are removed. In case of a
tie between the number of correct and incorrect classifications, the element is retained. As
such, the algorithm eliminates elements that deteriorate the classification performance. In
the experiments, MoCS uses the 1NN classifier.

MoCSImb

As a result of the skewness in the class distribution, using a majority-based approach in
the removal criterion may not be entirely appropriate. A larger weight should be attributed
to the misclassification of a minority element compared to the correct classification of a
majority element, which can in general be regarded as ‘easier’. In particular, majority elements
misclassifying a relatively large amount of minority instances should not be retained, even
when they also lead to a correct classification of a high number of majority instances. To this
end, we can make the removal criterion slightly more nuanced. Since we interpret the IR as
the relative number of majority instances that can be found for each element of the minority
class, we can demand the contribution of x to the correct classification of at least IR majority
instances for each misclassified minority element, when considering a majority instance x for
retention in S. Intuitively, this means that a majority instance needs to make a larger effort
to prove its worth with regard to the classification of its own class. For minority instances,
the original removal criterion is used.

Batch removal

As is done by the original MoCS method, the removal of elements is executed in batch mode.
In this way, we can also ensure that S is not more imbalanced than the original set T .
Furthermore, we also do not allow the positive class to become the new majority.

These two conditions can be verified before the batch removal. When they are not met, some
marks of elements of the appropriate class are undone. Choosing which marks are removed,
can again be based on the number of correct or incorrect classifications in which an element
took part. We define

remove element(x) =
{
Incorr
Corr if Corr 6= 0

+∞ if Corr = 0,

where Corr and Incorr represent the number of correct and incorrect classifications respec-
tively. These scores represent how certain we can be that the removal of a particular element
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was justified. Marks are undone in order of increasing values of remove element(·). For
negative instances, Corr corresponds to the number of correct negative classifications and
Incorr to the number of incorrect positive classifications, such that they relate to the actual
elimination criterion. Obviously, there is only need for caution at this point when k > 1. No
further distinction needs to be made between positive or negative elements, nor should there
be an extra factor IRT in the definition for negative instances, as this would be the same
for all elements and can safely be ignored. Finally, when both Corr and Incorr equal zero,
no mark would have been applied in the first place, so no special care is needed to define
remove element(·) in such a situation.
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7 ENN-like methods

In this chapter we consider four IS methods that follow the general scheme of ENN (Sec-
tion 4.6):

1. Initialization: S = T .

2. For all elements x ∈ T :

(a) Predict the class of x.

(b) If its predicted and actual classes do not match, x is removed from S.

Based on this description, we can classify the methods in this chapter as decremental filters
aimed at editing out the noise in the data. We will study the Edited Nearest Neighbor
with Estimation of Probabilities of Threshold (ENNTh) [106], Edited Normalized Radial
Basis Function (ENRBF) [47], Nearest Centroid Neighborhood Edition (NCNEdit) [94] and
Relative Neighborhood Graph (RNG) [95] techniques. These methods differ from each other
by using varying approaches to predict the class of an element in step 2a. ENN did so by
using the class of the majority of the k nearest neighbors of the element under consideration.
The four IS methods studied in this section will go about this in another way. Step 2b can
also be slightly more involved than merely comparing the class estimates.

The adaptations proposed in this section mostly affect step 2a. The prediction process in
these ISImb methods makes a distinction between classes, such that its estimates can be more
nuanced.

We also ensure that the final set S is not more imbalanced than the original training set. This
can be achieved by first marking all elements which would be removed in step 2b. Before
proceeding with their batch removal, marks are undone if the condition on the IR is violated.
The order in which elements are reselected to take part in S can be based on the values used
in the elimination criterion. Elements for which the exclusion from S was decided on with less
certainty should be reconsidered first. As specified in the subsequent sections, all modified
methods allow for a natural way to determine the function certainty(·) representing these
degrees of certainty, such that elements can be reselected in increasing order of its values.
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7.1 ENNTh

For each class in T , ENNTh determines the probability that x belongs to it. To obtain an
estimate for this value, the k nearest neighbors xi of x are used, where k = 3 was used in our
experimental study. The smaller the distance d(x,xi), the greater the contribution of xi to
the estimation of the probability that x belongs to class l(xi).

In general, the probabilities are estimated as follows:

1. Let c be the number of classes in T . In our experimental study, c will always equal two.

2. For j = 1, . . . , c:

Pj(x) =
k∑
i=1

(
pij ·

1
1 + d(x,xi)

)
,

where pij represents the probability that the ith neighbor xi belongs to class lj . In
practice, this value will be determined as

pij =
{

1 if l(xi) = lj

0 if l(xi) 6= lj .
(7.1)

The probability that x belongs to a certain class is calculated as a weighted average of
the probabilities for its k nearest neighbors to belong to that class. The weights are
inversely proportional to the distance between x and its neighbors, which shows that
more distant neighbors have a smaller contribution to the estimation of this probability.

3. Normalization of the probabilities. The probability that x belongs to the ith class is
given by

pi(x) = Pi(x)
c∑
j=1

Pj(x)
.

The class prediction l̂(x) is determined as the class li for which pi(x) is maximal, i.e. to which
x is most likely to belong. Specifically,

l̂(x) = li,

with
i = argmax

j
(pj(x)).

ENNTh deviates from the general scheme presented in the introduction, as the method also
needs to be certain enough about its class prediction, i.e. the probability for an element x to
belong to its own class needs to be sufficiently high. If not, x is discarded, even when the
prediction was correct. The parameter µ models how certain a prediction needs to be for it
to be considered as reliable. The calculated probability needs to exceed its value before being
accepted. Its default value is 0.7.
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ENNThImb

The main modification to ENNTh we tested, apart from the condition on the IR, regards its
use of the µ parameter. We compared three versions of ENNThImb. The first one does not
use µ at all, the second one keeps the original criterion in place and in a third version we
introduced a new way to use µ.

In the experiments of the third version, we used the same default value for µ as the original
algorithm, i.e. µ = 0.7, but the parameter is only used for majority elements. This means that
when it is most likely that a given positive instance indeed belongs to the positive class, the
element is always retained, regardless of how high the estimated probability is. For majority
elements, the condition was updated such that it takes the relative difference between P+(x)
and P−(x) into account. To motivate this choice, assume P+(x) = 0.6 and P−(x) = 0.8 for
a negative instance x. The original method would decide to retain x. Nevertheless, a high
value is also attained for P+(x), which suggests that the prediction is not very certain and it
may be beneficial to remove x after all. Keeping this in mind, we felt that a more appropriate
criterion was to remove a negative instance when

P+(x) > µ · P−(x).

In the above example, using µ = 0.7, we would find

P+(x) = 0.6 > 0.56 = µ · P−(x),

leading to the exclusion of x.

Nevertheless, the comparative study showed that the version of ENNThImb which used µ
in the original way yielded the best results. This means that the only true modification to
ENNTh in the final version of ENNThImb is the guarantee that the set S will not be more
imbalanced than T .

Finally, based on the elimination criterion, we can define the degree of certainty the method
has in its decision to mark an element x as

certainty(x) = pother(x)− pown(x),

where pother(x) and pown(x) are the estimates for x to belong to the opposite and its own
class respectively.

7.2 ENRBF

The probability Pl(x) for x to belong to class l based on the information present in T \ {x},
is estimated by using the subset Tl ⊆ T \ {x}. Tl consists of those elements of T \ {x} that
belong to class l, i.e.

Tl = {y ∈ T \ {x} | l(y) = l}.

Using this set, the ENRBF algorithm determines, for each class l, the value

Pl(x) =
∑
y∈Tl

G(x,y).
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The function G(·, ·) is defined as

G(x,y) = G(x,y;σ)∑
z∈T

G(x, z;σ)
, (7.2)

where
G(x,y;σ) = e

− d(x,y)/σ ∈]0, 1],

with d(·, ·) a distance function and σ > 0 a given constant.

G(x,y;σ) represents the contribution of the element y to the probability for x to belong to
class l(y). It is clear from the definition of G(·, ·) that elements further away from x have
a smaller contribution. The scaling factor σ influences this as well. For smaller values of σ,
more elements have a significant weight. When σ increases, the values −d(x,y)

σ decrease, which
results in smaller weights for more distant elements.

In general, ENRBF removes an element x, when there exists a class k 6= l(x) for which

Pl(x)(x) < α · Pk(x) α ∈]0, 1]

holds. For two-class problems, this means that a positive instance is removed when

P+(x) < α · P−(x)

and a negative instance when
P−(x) < α · P+(x).

Elements are removed from S when the predicted class does not match their actual class.
The elimination criterion contains an additional parameter α determining its strength. For
larger values of α, elements are removed more easily, since P (l(x) | x, T \ {x}) has to take
on a value high enough for x to be included in S. This means that the estimated probability
of belonging to the actual class should be sufficiently high.

The default values of the parameters of this method are α = 1 and σ = 1.

ENRBFImb

We made several modifications to ENRBF and discuss them separately below.

Restricting T−

Firstly, when T is imbalanced, the sizes of T− and T+ can be very different. To allow for a
fairer comparison, we restrict T− to |T+| elements when determining P−(x). These elements
are chosen as those closest to x, which is motivated by the fact that the original algorithm also
attributes more weight to nearby elements to determine the probabilities. This modification
also makes for a more meaningful normalization in (7.2), as the positive and negative classes
now have an equivalent contribution to the denominator.
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The G(·, ·) function

We have also modified the G(·, ·) function, such that its behavior depends on the classes of its
arguments. The value G(x,y) represents the contribution of the element y to the probability
for x to belong to class l(y). As explained above, elements located further away from x
have a smaller contribution, which is further influenced by σ. In determining Pl(x) with
l = l(x), ENRBFImb uses the value σ0 provided by the user. When l 6= l(x), a distinction is
made based on whether x belongs to the positive or negative class. We want to increase the
influence of nearby positive elements on the value P+(x) for a negative element x. This can
be modeled by using σ−,+ = 1

IRT
· σ0. On the other hand, to lessen the influence of nearby

negative instances on the estimation P−(x) for a positive element x, we use σ+,− = IRT · σ0.

In summary, the new G(·, ·) function is

G(x,y) =


e
− d(x,y)/σ0 if l(x) = l(y)
e
− d(x,y)/(IRT · σ0) if x ∈ Pos and y ∈ Neg
e
− IRT · d(x,y)/σ0 if x ∈ Neg and y ∈ Pos.

The value σ0 was set to one in our experiments, which coincides with the default value for σ
in the original algorithm.

Elimination of elements

Our final modification regards the use of α in the elimination criteria. We use different values
for the two classes, such that a positive instance is removed when

P+(x) < α+ · P−(x)

and a negative instance when
P−(x) < α− · P+(x).

The α values are used to scale the probabilities. We have set

α+ = α

ln(IRT ) + 1 and α− = (ln(IRT ) + 1) · α.

This results in a less hasty removal of positive instances, while making it more likely to remove
negative ones. The IR of T is used, as it represents the relative sizes of the two classes. When
IRT = 1, the above boils down to the same removal criterion as used in ENRBF. We have used
the ln(·) function as opposed to the IRT itself, such that the α values are not too extreme.

Certainty degrees

In the final step, which resolves potential issues with regard to IRS , we define the certainty
degrees as

certainty(x) = αl(x) · Pother(x)− Pown(x),

like we did for ENNThImb. In this definition, the appropriate α value depending on the class
of x is used.
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7.3 NCNEdit

NCNEdit uses the k Nearest Centroid Neighborhood (kNCN) construction, which defines the
neighborhood NCNx of x, consisting of the k neighbors x1, . . . ,xk, as follows:

1. x1 is the nearest neighbor of x in T .

2. For i ≥ 2, xi is the element for which the centroid of the set {x1, . . . ,xi} is closest to
x. In other words,

xi = argmin
y

d[x, Centroid(x1, . . . ,xi−1,y)].

As for ENN, we used three neighbors for each instance in T in our experiments.

The most present class among the k elements in NCNx is used to predict the class label of
x. When this prediction and the actual class do not match, x is removed.

NCNEditImb

NCNEdit stays very close to ENN. It still uses k neighbors to predict the class label of
elements, but instead of using the k nearest neighbors, they are chosen by means of the new
construction explained above. The only truly defining aspect of this method is therefore its
use of kNCN.

Its definition has not been changed, but the kNCN construction is used in a different way. In
particular, two neighborhoods kNCN+ and kNCN− are constructed, representing the nearby
location of the positive and negative neighbors respectively. NCNEditImb constructs kNCNl in
the same way as NCNEdit did for the general kNCN neighborhood, but the selected elements
are required to belong to class l. This means that x1 is the nearest class-l neighbor of x and
the remaining elements are chosen as

xi = argmin
y | l(y)=l

d[x, Centroid(x1, . . . ,xi−1,y)].

When the two neighborhoods kNCN+ and kNCN− of an element x have been constructed,
a decision needs to be made whether or not to retain x in S. We again make use of the
centroids. When c+ and c− are the centroids of kNCN+ and kNCN− respectively, we decide
to remove a positive element x when

d(x, c−) < d(x, c+)

and a negative element when
d(x, c+) < d(x, c−).

By separating the two classes among the neighborhoods, it is harder for negative instances to
dominate the neighborhoods of positive elements, which protects the positive instances from
an unwarranted removal.

Lastly, the certainty degrees to be used to undo marks of elements if the condition on IRS so
requires, are given by

certainty(x) = d(x, cown)− d(x, cother),
where d(x, cown) and d(x, cother) denote the distances to the centroids of the neighborhoods
of elements of respectively the same and opposite class as x.
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7.4 RNG

This method uses a proximity graph G = (T,E), when making its class predictions. G is an
undirected graph, with vertex set T and edge set E. An edge is present between the vertices
x and y, if the elements x and y satisfy

(∀x′ ∈ T with x′ 6= x,y)((x,y) ∈ E ⇔ d(x,y) ≤ max[d(x,x′), d(x′,y)]), (7.3)

for a given distance function d(·, ·). Geometrically, this means that x and y are neighbors
in G if and only if the intersection of the two hyperspheres with centers x and y and radius
d(x,y) does not contain any other elements of T . The class of an element is predicted as the
one to which the majority of its adjacent vertices in G belong. The instance is removed when
its predicted and actual classes do not match.

RNGImb

In the modified version of RNG, we changed G to become a directed weighted graph. Edges
are present between each pair of instances satisfying (7.3), but instead of one unweighted
and undirected edge, there are two weighted edges, one originating from each node. For
edges between same-class elements, the weights are equal. We chose to set both of them
to 1. Any other value would work fine as well, provided one makes the necessary changes
in the remainder of this section. The weights of the two edges between a pair consisting of
one positive and one negative element differ from each other, such that they can model the
different influences the nearby presence of elements of the opposite class has on positive or
negative instances. The weight of the edge originating in the positive instance is set to w1
and the one originating in the negative instance to w2 (see Figure 7.1).

+ –
w1

w2

Figure 7.1: Example of the weights in the directed graph G.

Class predictions are made by summing the weights of edges originating in the node at hand.
The values S+ and S− are defined as the sum of the weights of edges directed to positive
and negative instances respectively. RNGImb removes an element x from S when the value
corresponding to its own class is the smaller of the two. By letting the edge weights depend
on the classes of their end nodes, neighborship is modeled in a nuanced way, in which the
class imbalance should not cause an unreasonable dominance of negative elements.

Determining the edge weights

Even though the weights of the two edges between a positive and a negative element differ
from each other, they still, like edges between same-class elements, sum to two, i.e.

w1 + w2 = 2. (7.4)
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These weights always satisfy
w1 ≤ 1 ≤ w2.

The effect of the difference in weights is twofold: it protects minority instances from a hasty
removal, but also gives them a larger weight in the decision to remove nearby majority ele-
ments.

For datasets exhibiting a higher degree of imbalance, the difference in the weights w1 and w2
is larger. In particular, when IRT = 1, the weights are equal. For IRT → +∞, their difference
tends to the predetermined maximal value 1. By the additional constraint imposed by (7.4),
this implies

w1 −→
IRT→+∞

1
2 and w2 −→

IRT→+∞

3
2 .

The desired behavior can be modeled by

w2 − w1 = ln(IRT )
ln(IRT ) + 1 . (7.5)

Combining (7.4) and (7.5) yields

w1 = ln(IRT ) + 2
2 ln(IRT ) + 2 and 3 ln(IRT ) + 2

2 ln(IRT ) + 2 .

As an example, we calculate these weights for several values of IRT :

• IRT = 1: w1 = 1 and w2 = 1.

• IRT = 5: w1 = 0.69 and w2 = 1.31.

• IRT = 10: w1 = 0.65 and w2 = 1.35.

• IRT = 100: w1 = 0.59 and w2 = 1.41.

To show that this modification can certainly have an effect, we consider a specific example
where IRT = 10. Assume a positive element x has two positive and three negative neighbors
in G. Figures 7.2 and 7.3 represent this situation, where G is an undirected graph for RNG,
but directed and weighted for RNGImb. As the majority of its neighbors belong to a different
class, RNG would decide to remove x. Our new method determines the sums of the weights
of the edges originating in x. We find

S+ = 2 and S− = 3 · w1 = 3 · 0.65 = 1.95.

As S+ ≥ S− and x belongs to the positive class, the element is retained in the dataset.

Certainty degrees

Finally, the certainty degrees are again easily derived from the elimination criterion and are
given by

certainty(x) = Sother − Sown,

where the indices refer to the class to which the values relate.
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Figure 7.2: Original RNG.
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Figure 7.3: RNGImb: w1 = 0.65
and w2 = 1.35.
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8 Miscellaneous methods

In the final chapter of this part, we discuss the six remaining IS methods, that did not fit into
one of the foregoing families, nor do they have enough properties in common for them to be
considered a separate family.

8.1 POP

The Pattern by Ordered Projections (POP) method was proposed in [90]. It is aimed at
condensation, by partitioning the space represented by T into homogeneous rectangles and
removing internal points from them. POP is a filter method, which removes redundant
elements in batch.

Elements in the training set T are described with d attributes a(1), . . . , a(d) or more precisely

(∀i ∈ 1, . . . , n)(xi = (x(1)
i , x

(2)
i , . . . , x

(d)
i )),

where T = {x1, . . . ,xn} and x
(j)
i is the value attained for attribute a(j) by xi. In this way

elements of T can be represented as points in a d-dimensional space, where the attribute
values correspond to their coordinates. A region in this space is considered as homogeneous,
when all elements contained in it belong to the same class. To determine whether a point is
an internal point of some d-dimensional rectangle, the d dimensions are assessed separately.
When the ith dimension is considered, only the values of the ith attribute a(i) are used. POP
treats an element as an internal point of a given region, when it is an internal point for each
dimension. This notion requires further specification.

To determine the internal points in the ith dimension, the values for the attribute a(i) are
selected for all elements in T . The method makes a distinction between nominal and non-
nominal attributes and considers the latter first, which can be continuous or discreet. Let a(i)

be such a non-nominal attribute. The first step is to sort the values x(i)
j , with j = 1, . . . , n,

in ascending order, which is done using the Quicksort algorithm [58]. When equal attribute
values occur, the elements are sorted based on their classes, which requires a given ordering
on the class labels. To obtain a high reduction of elements, it is also advantageous that
elements of the same class are next to each other in this sequence. To this end, after the
execution of Quicksort, parts of the sequence containing equal attribute values are resorted
such that more elements of the same class are adjacent, i.e. next to neighboring elements
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with a slightly different attribute value, but belonging to the same class. Next, the ordered
sequence is divided into intervals, such that an interval consists of consecutive attribute values,
stemming from elements of the same class. In other words, when an interval contains both
x

(i)
j and x

(i)
k , this implies that l(xj) = l(xk). The intervals are chosen as large as possible,

which means that elements of consecutive intervals necessarily belong to different classes.
When a value is located at either end of an interval, the element x ∈ T , from which this
value originates, is called a border point. The remaining elements are internal points. The
weakness of an element x is defined as the number of times x is an internal point. When
weakness = d, the element is an internal point in every dimension and as such an internal
point of a homogeneous d-dimensional rectangle. Such an instance is removed from S.

When all non-nominal attributes have been processed, the algorithm moves on to the nominal
ones. The values of these attributes are not sorted, but for each potential value that the
attribute can adopt, the set of elements that take on this value is determined. The weakness
of all these elements is increased by 1, except for the element that has the current minimal
weakness value, for which this value remains unchanged.

In summary, POP performs the following steps:

1. Initialization: S = T .

2. Initialization: (∀x ∈ T )(weakness(x) = 0).

3. For each non-nominal attribute a(i):

(a) Sort the elements of T based on the values of a(i) with Quicksort.
(b) Resort this sequence, such that more elements of the same class are adjacent.
(c) Divide the sequence into intervals.
(d) For each internal point x, increase weakness(x) with 1.

4. For each nominal attribute a(i), for each value v(i)
j of this attribute:

(a) Determine the set Vj = {x ∈ T |x(i) = v
(i)
j }.

(b) Determine x∗ = argmin
x

weakness(x).

(c) For each element x ∈ Vj \ {x∗}, increase weakness(x) with 1.

5. Remove those elements x ∈ T from S for which weakness(x) = d.

POPImb

In the current POP algorithm, being an internal point is a yes-or-no question. No distinction
is made between how internal we consider a point to be. When it is the middle element in
an interval containing 20 instances, it could be regarded as more internal than an instance
located next to the border element. Similarly, when comparing it to the middle point of an
interval consisting of only 3 elements, we can again conclude that the latter feels less internal.
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Internal and border points

POPImb still considers all features separately, but instead of adding the value 1 to the
weakness-value of all internal points, it adds a value w, representing how certain we are
that the element under consideration is indeed an internal point in that dimension. Elements
that are being assigned higher values for their final weakness are more likely to be removed
by POPImb, as we can be more certain that this removal is justified.

When an element is a border point in a certain dimension, it is never removed by the original
algorithm. We have made this more nuanced, by keeping track of the number of dimensions
in which an element acts as border point. This value can be used to determine

border(x) = # times x was a border point
# features .

When this number exceeds 1
2 , border(x) is set to 1, as the element is a border point for more

than half of the dimensions. These values can be used to protect the actual border elements
from removal. As will be clear from the description below, we only allow the removal of
border elements when they acted as border points for at most half of the features.

Weakness values

We still need to specify how the values w are determined. Like the original method, we
make a distinction between nominal and non-nominal features. For non-nominal features we
use the width l of the interval and the position of an element within it. The middle point
is assigned w = l. The closer the element is located near one of the endpoints, the lower
this value gets. By explicitly using the value l for the middle points, we are ensuring that
middle points of wider intervals are considered as more internal compared to those located in
smaller intervals. When majority elements considerably outnumber the minority instances,
we can expect majority intervals to be wider than minority intervals. Consequently, minority
elements are assigned a smaller final weakness value and are removed less easily.

For an interval of odd length l, the values is calculated by using a downward opening parabola
with vertex in (0, l) and zeros in x = −l+1

2 and x = l−1
2 . We remark that when l = 1, the

interval consists of a single point, which is necessarily a border point. In the other cases, the
parabola is given by

w(x) = −4l
(l − 1)2x

2 + l.

By placing the middle point at x = 0 and the endpoints at x = −l+1
2 and x = l−1

2 , we can
obtain the w-value for an element by evaluating the function w(·) in the corresponding point.
Figure 8.1 represents the calculation of w-values for points in an interval of length 11.

When l is even, the middle points are placed in x = 0 and x = 1 and the endpoints at
x = −l+2

2 and x = l
2 . The vertex of the parabola is located in (1

2 ,
(l−1)2

l−2 ), ensuring that the
two middle points are both assigned the value l. The function is therefore given by

w(x) = −4
l − 2(x− 1

2)2 + (l − 1)2

l − 2 .
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Figure 8.1: Calculating w-values for POPImb for an interval of length 11. In point A, we
observe that the penultimate element in the interval is assigned the value 3.96.
Comparing this to the value 9.24 in point B, it is clear that more central points
are assigned higher values.

This expression is not defined when l = 2, but in that case the interval consists of two border
points, which are both assigned w = 0.

Nominal features

Deciding which value to assign to w when considering a nominal feature, is, like the original
algorithm, based on the set of elements attaining a specific feature value vj . As opposed
to the original method, we do not use the set Vj = {x ∈ T |x(i) = v

(i)
j } as this does not

distinguish between classes and therefore does not seem fit to indicate whether elements are
internal points. For each feature value vj , we construct the two sets

V+ = {x ∈ Pos |x(i) = v
(i)
j } and V− = {x ∈ Neg |x(i) = v

(i)
j }.

We add the value w = |V+|
|Pos| to the weakness of all elements in V+ and w = |V−|

|Neg| for those in
V−.

Condition on IRS

When the weakness of all elements in T has been determined, these values are sorted in
descending order and are used to remove instances up to the point where our traditional
condition on the IR would be violated. In this way, elements about whose internal position
we are more confident about are removed first. We use the values border(·) to protect border
elements from removal. In particular, the sorting of the elements does not directly use the
weakness-values, but rather

weakness(x) · (1− border(x)).
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8.2 PSC

Prototype Selection based on Clustering (PSC) [81] is an incremental filter method aimed at
condensation. As its name suggests, PSC is based on the analysis of clusters. Clusters are
subsets consisting of similar elements. When a clustering method is applied to a set T , each
element is assigned to exactly one cluster. The result is a partition of T . A homogeneous
cluster is a cluster where all elements belong to the same class. When elements of several
classes are present, the cluster is heterogeneous. PSC uses the K-means method [74] to
partition T into C clusters.

The algorithm distinguishes between two possible situations: when a cluster is heterogeneous,
it consists of elements located in the boundary regions between classes, while a homogeneous
cluster contains internal points of a class. PSC selects only one representative element from
a homogeneous cluster, which is chosen as its centroid.

In a heterogeneous cluster, several boundary elements are selected for addition to S. Let CM
be the majority class in the cluster. For each element x of every other class Co that is present
in the cluster, the element xM ∈ CM that is nearest to it is determined. For the element
xM in turn the nearest element xo ∈ Co is obtained. For both xM and xo, when multiple
elements are found at the minimal distance, one of them is randomly selected. Both xM and
xo are added to S.

In summary, PSC performs the following steps:

1. Apply the K-means clustering algorithm to partition T into C clusters.

2. Initialization: S = ∅.

3. For every cluster Clust:

• If Clust is homogeneous, the centroid of Clust is added to S.
• If Clust is heterogeneous:

(a) Let CM be the majority class in Clust.
(b) For every element x ∈ Clust, with x ∈ Co 6= CM :

i. Determine xM ∈ CM as

xM = argmin
y∈CM

d[x,y].

ii. Determine xo ∈ Co as

xC = argmin
y∈Co

d[xM ,y].

iii. Add xM and xo to S.

PSCImb

The application of K-means is kept in place in PSCImb, but the analysis of the constructed
clusters has been modified.
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Homogeneous clusters

Firstly, the behavior of the algorithm on homogenous majority and homogenous minority
clusters differs. As before, when encountering a cluster consisting solely of majority elements,
its centroid is added to S. On the other hand, a homogeneous minority cluster is able to
contribute more elements to S, namely IRT . This is motivated by the definition of the IR of
a dataset, as it represents the number of majority instances we can expect to find for each
minority element in T . Obviously, when IRT exceeds the size of the minority cluster Clust,
the cluster is simply added to S in its entirety.

The centroid is regarded as an appropriate representative of the entire cluster, which is why
it is selected by the original PSC. When adding more than one instance, we want to preserve
this property, i.e. the selected instances should form a good representation of their cluster
Clust. When |Clust| ≤ IRT , no special care needs to be taken as we select the entire cluster.
In the other case, we first select the centroid c. Next, we determine the element x ∈ Clust
at the furthest distance from c. The next element is chosen such that it is located most
distant from the centroid of the two previous elements. We continue this procedure until
IRT elements from the cluster have been selected. To be precise, the selected elements are
determined by

xi = argmax
x∈Clust

d(x, Centroid{c,x1, . . . ,xi−1}),

where i = 1, . . . ,min(IRT , |Clust|)− 1.

Heterogeneous clusters

When all homogeneous clusters have been handled, the algorithm moves on to the hetero-
geneous ones. Heterogeneous clusters contain border elements, which the original algorithm
aims to select. PSCImb still selects the same elements as PSC would, but stores more infor-
mation regarding the remaining elements in the heterogeneous clusters. This is used in the
final phase of the algorithm, which is put in place to resolve possible balance issues of the
constructed set S.

When processing the heterogeneous cluster Clust, the first step is to determine the majority
class CM . Instead of using the absolute majority like PSC does, the positive class is considered
as CM , when it is either the absolute majority or when the negative class is still the majority,
but IRClust ≤ IRT , meaning that the cluster is less imbalanced than we could expect it to be.

PSCImb handles elements of CM differently than those of Co. Currently, for every element
x ∈ Co, the closest element xM ∈ CM is determined and the instance xM is certainly selected.
In this procedure, an element xM can be chosen by several instances x, but it is obviously
added to S only once. If we would have removed xM from CM after it had been chosen the
first time, x would have to select another element as its nearest neighbor. Such an element
can be considered as back-up and is now labeled as such.

In PSCImb, when an element x selects some already chosen xM , we determine the second
closest element of CM and continue this search, marking all elements as back-up on the way,
until an element is encountered that has not been used before by any other element. For each
element of CM , we keep track of how often it would have been used as a back-up neighbor.
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This number is denoted by b. When an element is used as the first nearest neighbor, it is
always added to S, without any further consideration of its b-value. Unselected elements with
positive b-values form the set of candidates to select additional instances from in the final
stage of the algorithm. The number of times they have been used provides an order to guide
the selection procedure.

The steps performed when processing a heterogeneous cluster are summarized as follows:

1. Determine the majority class CM in Clust. This is the negative class when it is the
absolute majority in Clust and IRClust > IRT . Otherwise, the positive class is used.

2. For every element x ∈ Clust, with x ∈ Co 6= CM :

(a) Determine xM ∈ CM as
xM = argmin

y∈CM

d[x,y]

and mark this instance with the label removed.
(b) If the selected element xM was already marked by either the label removed or

back-up, determine additional nearest neighbors until an unmarked element is en-
countered. The b-values of all elements in this sequence are increased by one and
the final unmarked element is now marked as back-up as well.

(c) Determine xo ∈ Co as
xC = argmin

y∈Co

d[xM ,y].

(d) Add xM and xo to S.

3. Remove all instances marked with the label removed.

As is clear from the description above, the selection of elements in Co remains unchanged.

Condition on IRS

The final stage of the algorithm consists of calculating the intermediate IR of S and selecting
additional instances when our traditional condition on this value is violated. Candidates for
further selection are elements in heterogeneous clusters, that have been marked as back-up
in the previous step. Based on their b-values, elements can be selected in a sensible way.
Furthermore, the group of heterogeneous clusters are sorted in increasing order of the values
Clust−
Clust+

, representing the ratio of negative to positive instances within a cluster Clust. Clusters
at the beginning of this ordered sequence contain relatively more positive instances, compared
to those nearer to the end, which are closer to attaining a negative homogeneity. Therefore,
when adding positive instances to S, we first use clusters from the beginning of the sequence,
while the search for additional negative elements starts at the opposite end.

Three situations can present themselves in S:

1. IRS = 1 or IRS ≤ IRT and the negative class is still the majority: no measures need to
be taken and S is the final solution.

2. The negative class is still the majority, but IRS > IRT : this can be resolved by selecting
additional positive instances. They are selected from clusters starting at the beginning
of the ordered sequence of clusters.
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3. The positive class has become the absolute majority: this can be resolved by selecting
additional negative instances. They are selected from clusters starting at the end of the
sequence.

When instances need to be added, PSCImb starts with the first cluster and selects the back-up
instances in descending order of their b-values. If their number does not suffice, the algorithm
moves on to the second cluster and continues until either enough additional instances have
been selected or the end of the sequence has been reached. We also studied an alternative
approach, in which one element is selected from each cluster in the ordered sequences, circling
back to the beginning when not enough elements have been found. The elements were still
selected based on their b-values. The differences in results between the two versions were
minor, but the former performed slightly better, which is why we kept it in place.

We remark that we can not guarantee with absolute certainty that the final objectives in
situations 2 and 3 will be met, as the only candidates for addition are the back-up elements.
No further addition of other elements, like the ones located in homogeneous clusters, are
made.

Value of C

Finally, we wish to note that a preliminary study indicated that increasing the number of
clusters C can lead to better performing sets S, reflected in higher AUC values obtained in the
posterior classification. The same effect was observed in the application of PSC on balanced
data, when evaluating the performance of kNN by its accuracy. In our further experimental
work, we chose to set C to 25 for both PSC and PSCImb, as a higher value may not be prudent
considering the small sizes of some of the datasets.

8.3 IB3

The Instance Based 3 method (IB3) was introduced in a series of IB algorithms in [1]. It
is a hybrid method and a filter and adds elements incrementally to S. As a result of its
application, redundant instances are removed from T , while taking the possibility of noise on
the data into account. Only elements that contribute to a good classification performance
are retained in the training set. To this end, the algorithm stores, for every element in S,
information regarding its behavior in the classification in an accuracy-like way.

More specifically, each time an element is located sufficiently close to a newly presented
instance of the same class, its accuracy is increased. When it is located near an element of
a different class, the accuracy is decreased. Its accuracy record is kept from the moment
the element x is added to S. As such, this information only relates to elements y that are
considered at a later stage than x and forms an estimate of the future contribution of x in
the classification process. When, at some point in the algorithm, the element proves to not
be valuable after all, IB3 decides to remove it from S.

The IB3 algorithm uses the following scheme in the construction of S:

1. Initialization: S = ∅.

2. For each element x ∈ T :
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(a) Calculate for each y ∈ S the value Sim(x,y), that measures the similarity between
the elements x and y.

(b) Determine ymax:
• When there exists, based on the significance test discussed below, at least one

acceptable element y ∈ S, set ymax to be the acceptable element y ∈ S with
the highest value for Sim(x,y) .

• When there are no acceptable elements in S, ymax is set to an arbitrary element
in S.

(c) If l(x) 6= l(ymax), x is added to S.
(d) For elements y ∈ S with Sim(x,y) > Sim(x,ymax), i.e. elements more similar to

x than ymax, the classification information is updated.
For these elements the following adaptations are made:

• Update the classification information of y. If its class coincides with that of x
this reflects positively on its performance record. In the other case, it is noted
that the presence of y in S could have resulted in a misclassification of x.

• If the performance of y, based on the significance test discussed below, is
significantly low, y is removed from S.

Similarity

In determining the similarity Sim(x,y) of two elements x and y, the Euclidean distance
d(·, ·) is most commonly used. Two elements are considered more similar when they are
closer together. In particular, when determining ymax, the acceptable element nearest to x is
selected, provided such an acceptable element exists. In step 2d, when considering elements
more similar to x than ymax, these are the elements y for which

d(x,y) ≤ d(x,ymax)

holds.

Significance test

Elements that perform too poorly are regarded as noise. To determine whether elements
are noise or contribute to a good classification performance, a significance test is used. An
element x is only accepted when the classification performance is significantly larger than
the observed frequency of the class l(x) and x is removed from S when the performance is
significantly smaller than the observed class frequency.

A proportion confidence interval test is conducted by means of the Wilson score interval
procedure [119]. The lower and upper bounds of the intervals for both the classification
performance and the class frequency are given by

p+ z2

2g ± z
√

p(1−p)
g + z2

4g2

1 + z2/g
.

When c is the predetermined confidence level, z represents the associated (1 − 1
2(1 − c))-

percentile of the standard normal distribution. The values g and p are interpreted differently
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depending on whether the interval is constructed for the accuracy or class frequency. For
the accuracy, p represents the number of instances to whose correct classification the current
element may have contributed. The value g is set to be the total number of times the
classification record for the current element has been updated in step 2d. Since we are storing
information starting from the inclusion of an element in S, it is clear that g is at most the
number of elements that have been considered after x. When constructing the interval for
the class frequency, p represents the current frequency of class l(x), which is determined as
the proportion of previously processed instances that belong to this class. The total number
of these instances is used as the value for g.

When [lacc, uacc] and [lfreq, ufreq] are the constructed intervals, the element under consider-
ation is accepted when the performance interval lies fully above the frequency interval, i.e.
when lacc > ufreq. Analogously, the element is rejected when the performance interval lies
fully below the frequency interval, i.e. when uacc < lfreq. In case the intervals overlap, the
decision to accept or reject the element is postponed to a later stage in the algorithm.

In general, the confidence levels caccept and creject used in respectively the acceptance and
rejection criterion, differ. In both the original proposal [1] and our experiments, these values
are set to caccept = 0.90 and creject = 0.70. This means that the algorithm uses a stricter
criterion to accept good elements than to reject bad elements, i.e. bad elements are rejected
more easily than good elements are accepted. The corresponding z-values are zaccept = 1.6445
and zreject = 1.0343.

IB3Imb

The authors of the original proposal motivated their choice to compare the observed accuracy
with the observed class frequency by the fact that this should make the method less sensitive
to imbalanced class distributions. The successful classification attempts of minority instances
can be low merely because a large number of majority instances has already been processed
and comparing the accuracy of the minority instance with its observed class frequency there-
fore seems more sensible. Our experiments indeed show that IB3 performs tolerably well on
the imbalanced datasets.

IB3Imb is divided into two main parts. First, we construct an intermediate set Stemp in an
incremental fashion. Afterward, Stemp is reduced to the final set S.

Construction of Stemp

The first stage largely coincides with IB3 itself, with one notable difference: once an element
has been added to Stemp, it is never removed in step 2d. Instead, we merely mark the
elements that would have satisfied the removal criterion, such that they can not be used as
ymax anymore. Their classification record is still updated. In this way, we can postpone the
removal of poorly performing elements until the end of the algorithm.

In the original method, elements that have been selected at some point can be removed at
a later stage, when they do not show a sufficiently strong performance. Their removal is
permanent, i.e. such an instance is never added again, even when, according to the same
criterion, its accuracy is again significantly higher than the observed class frequency. In
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IB3Imb, elements exhibiting an inferior behavior at some point in the algorithm are still able
to survive at the end. It is clear that we are mimicking the execution of the original algorithm,
but allow for more information to be gathered before making a final decision to remove an
element, which follows in the second stage of our algorithm. We note that marks on the
elements are solely used to exclude them from the selection as ymax and they do not have
any meaning in the second phase of the algorithm.

Reducing Stemp to S

In the second phase of IB3Imb, a subset of instances are selected from the set Stemp to form
the final set S. We make a distinction between majority and minority elements.

The algorithm decides to only retain the acceptable majority instances and remove signifi-
cantly bad performing minority instances. However, the confidence levels in these criteria are
switched, i.e. the value of caccept is used in the removal criterion of minority elements and
creject to accept majority instances. As a result, compared to the original values, it is harder
for a minority instance to be removed and easier for a majority element to be accepted. We
made this modification to ensure that the reduction rate is not unjustifiably steep. When the
final number of majority elements is too low, i.e. when S would contain an absolute majority
of positive instances, additional elements of the majority class are added. Candidate elements
for reselection are restricted to the remaining majority instances in Stemp, that do not satisfy
the original removal criterion. They are added according to the degree of overlap between the
two confidence intervals. Majority instances are added to S until this set is perfectly balanced
or until there are no more candidates for reselection left.

We verified whether the removal criterion for majority elements is still too aggressive by also
considering a version of IB3Imb which used the original removal criterion for both classes,
using caccept and creject for minority and majority instances respectively. Another alternative
was to completely protect minority instances from removal, while using the original criterion
for majority elements. The version discussed above proved to yield the best results.

Finally, one could suppose that merely changing the values for the confidence intervals by
making them class-dependent may be sufficient to improve the performance of the algorithm.
We tested a version which coincides with IB3 itself and solely interchanges the values for the
confidence levels when working with minority instances, meaning that caccept is used in their
removal criterion and creject for acceptance. Nevertheless, the more involved modifications as
presented above resulted in a better performance in the posterior classification process.

8.4 PSRCG

Prototype Selection by Relative Certainty Gain (PSRCG) [97] is a filter method with a decre-
mental direction of search. It is a hybrid algorithm, aimed at removing both noisy and
redundant elements from T .

The first phase of this algorithm focuses on the removal of noisy instances. In each step, the
worst element in the dataset is eliminated. This element is chosen as the one for which, after
its removal, the largest increase in information is obtained. This choice is made based on
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the uncertainty present in a set of elements. This notion is further specified by the following
definitions:

Quadratic entropy QE: in general, in a dataset with c classes, this function is given by

QE(γ1, . . . , γc) =
c∑
i=1

γi(1− γi),

with

(∀i)(γi ∈ [0, 1]) and
c∑
i=1

γi = 1.

Quadratic entropy is an impurity measure. This means that it is an indication of the im-
purity of a set, i.e. the higher the value of QE(γ1, . . . , γc), the closer the values γ1, . . . , γc
are together. When we take the condition ∑c

i=1 γi = 1 into account, QE(γ1, . . . , γc) at-
tains its maximal value when

(∀i)(γi = 1
c

).

kNN graph: this is a directed graph G with T as its vertex set. The edge set E is defined as

(x,y) ∈ E ⇔ y is one of the k nearest neighbors of x.

Nevertheless, PSRCG uses G as an undirected graph.

Neighborhood N(x) of x ∈ T : this set is given by

N(x) = {y | (x,y) ∈ E ∨ (y,x) ∈ E} ∪ {x}.

From this definition it is clear that G is indeed being used as an undirected graph.

Local uncertainty around xi: this quantity is defined as

Uloc(xi) =
c∑
j=1

nij
ni

(1− nij
ni

) (8.1)

= QE

(
ni1
ni
, . . . ,

nic
ni

)
,

where
nij = |{y ∈ N(xi)|l(y) = lj}|,

labeling the c classes present in T as l1, . . . , lc, and

ni = |N(xi)|.

Based on the above definition of QE, it is clear that the local uncertainty around xi is
maximal when there is an equal distribution of classes in the neighborhood N(xi). In-
tuitively, this corresponds to the most difficult situation to come to a decision regarding
the class of xi.
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Total uncertainty: in the set T , with |T | = n, this is calculated as

Utot =
n∑
i=1

ni
n′
Uloc(xi),

with

n′ =
n∑
i=1

ni

=
n∑
i=1
|N(xi)|

=
n∑
i=1
|{xj |(xi,xj) ∈ E ∧ (xj ,xi) ∈ E} ∪ {xi}|

=
n∑
i=1

(|{xj |(xi,xj) ∈ E ∨ (xj ,xi) ∈ E}|+ 1)

= 2 · |E|+ n.

The sum is taken of the local uncertainties weighted with weights ni
n′ . When |N(x)|

attains a higher value, the local uncertainty around x receives a larger weight in the
global uncertainty.

In its elimination criterion, the PSRCG algorithm uses the Relative Certainty gain (RCG),
which is defined as

RCG = U0 − Utot
U0

.

U0 is the uncertainty in a set S, with |S| = m, determined by the prior distribution of the
elements:

U0 =
c∑
i=1

Li
m

(
1− Li

m

)
(8.2)

= QE

(
L1
m
, . . . ,

Lc
m

)
,

with
Li = {x ∈ S | l(x) = lj}.

RCG represents the decrease in uncertainty (the gain in certainty) resulting from the removal
of an element from the set. The algorithm removes an element in each step t, as long as the
following two criteria are met:

1. The RCG after the removal of the element is higher than before, i.e.

RCGt > RCGt−1.

2. RCGt > 0.
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After this first phase, a condensation phase follows, where redundant elements are removed.
An element x ∈ S is considered as redundant, when

Uloc(x) = 0.

In this calculation of Uloc(·), the (k+ 1)NN graph is used, to ensure that only internal points
of homogeneous regions are removed and elements from the decision boundaries are retained.

In summary, PSRCG performs the following steps in the construction of the set S:

1. Initialization: S = T , t = 1.

2. Construct the kNN graph G of S.

3. Calculate RCG1 = U0 − Utot
U0

.

4. Repeat the following steps, while RCGt+1 > RCGt and RCGt+1 > 0:

(a) Let t = t+ 1.
(b) Select x ∈ S with the maximal value of Uloc(x). If there are multiple elements

attaining this maximal value, the one with the smallest number of neighbors is
used.

(c) Remove x from G.
(d) Calculate RCGt+1 based on the new graph G.

5. Remove all elements x from S for which Uloc(x) = 0, based on the (k + 1)NN graph.

PSRCGImb

In our experiments, the number of classes always equals two. Expression (8.1) therefore
simplifies to

Uloc(xi) =
2∑
j=1

nij
ni

(1− nij
ni

)

= ni+
ni

(1− ni+
ni

) + ni−
ni

(1− ni−
ni

)

= ni+
ni

ni−
ni

+ ni−
ni

ni+
ni

= 2pi+pi−,

where pi+ and pi− respectively denote the proportions of positive and negative elements in
the neighborhood of xi. Similarly, expression (8.2) can be rewritten to

U0 =
2∑
i=1

Li
m

(
1− Li

m

)
= L+

m

(
1− L+

m

)
+ L−

m

(
1− L−

m

)
= L+

m

L−
m

+ L−
m

L+
m

= 2S+S−,
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with S+ and S− the proportions of positive and negative instances in S respectively.

Modeling local uncertainty

The use of Uloc(·) feels appropriate, as it makes a distinction between classes. However, as
a result of its symmetric definition, Uloc(x) equals zero when N(x) consists of elements all
belonging to the same class, completely disregarding the actual class of x. When Uloc(x)
would initially equal 1, removing elements from T such that the class distribution in N(x) is
shifted to favor elements from the opposite class is considered equally useful by the algorithm
as when such operations would result in a larger presence of elements of its own class in N(x).

To remedy this, we introduce an additional measure which models the relative presence of
neighbors of its own class in N(x). The local accuracy Aloc is defined as

Aloc(xi) =
{
pi+ if x ∈ Pos
pi− if x ∈ Neg,

using the same notation as above.

Optimization objective of PSRCGImb

The total accuracy Atot is calculated in an analogous way as Utot. We define the Relative
Accuracy gain (RAG) as

RAG = Atot −A0
A0

,

where A0 represents the accuracy of the 1NN classifier on S determined by leave-one-out-
validation.

The total gain (TG) is defined as the sum of RCG and RAG. This is the measure being
optimized by PSRCGImb. In step 4b, the element with the lowest value for Uloc(·) is currently
selected for removal. PSRCGImb uses the one with the lowest value for (Uloc−Aloc)(·) instead.

Condensation phase

PSRCGImb aims to produce a set S which is not more imbalanced than T , nor should the
positive class have become the majority. This is taken into account when reducing S in the
final condensation step of the algorithm, where the original method removes elements when
their local uncertainty based on the (k+1)NN graph equals zero. This criterion allows for the
entire removal of a class, which is certainly not ideal. In PSRCGImb, we now completely pro-
tect minority elements from removal in the condensation phase and ensure that the majority
class is never entirely removed either. Majority elements with Uloc(x) = 0 are considered for
removal and are effectively removed in order of increasing values of Aloc(x).

8.5 Reconsistent

Reconsistent was introduced in [73] as a condensation algorithm. It is a filter method.

In its first phase, Reconsistent determines the neighborhood N(·) of each element, using a
construction related to the NCN setup (see Section 7.3). For x ∈ T , instances are added to
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N(x) incrementally. The first candidate for addition is the nearest neighbor of x. Afterward,
the candidate neighbor y ∈ T in chosen as the one for which the centroid of the current set
N(x) extended with y is closest to x. Reconsistent demands the elements taking part in N(x)
to belong to the same class as x and the construction of the neighborhood is halted when the
candidate element belongs to a different class.

The algorithm continues by replacing each neighborhood by a representative instance. This
element is the one with the largest number of neighbors. All other elements in the neighbor-
hood are removed from the set S. These steps are repeated until no group can be replaced
by a representative element anymore.

In this procedure, elements from the decision boundaries can be removed as well, which
may lead to a decrease in classification performance. This issue is addressed by classifying
each element in T with the kNN classifier, using S as prototype set. When an element is
misclassified, it is stored in the intermediate set M . When all elements in T have been
processed, the same condensation step as in the first part of the algorithm is applied to M .
The elements of the reduced set M are added to S.

In summary, Reconsistent uses the following scheme:

1. Initialization: S = T .

2. For each element x ∈ S: construct its neighborhood N(x), until a neighbor of a different
class is encountered

3. Determine the element x ∈ S with the largest number of neighbors. Remove the
elements of N(x) from S and, if present, from the other sets N(y).

4. Repeat step 3 until
(∀x ∈ S)(|N(x)| = 0).

5. Initialize M = ∅.

6. For each element x ∈ T

(a) Classify x with the kNN rule and S as prototype set.
(b) If x is misclassified, it is added to M .

7. For each element x ∈ M : construct its neighborhood N(x), until a neighbor of a
different class needs to be added to N(x).

8. Determine the element x ∈ M with the largest number of neighbors. Remove the
elements of N(x) from M and, if present, from the other sets N(y).

9. Repeat step 8 until
(∀x ∈M)(|N(x)| = 0).

10. Add the elements of the reduced set M to S.
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ReconsistentImb

From the description and discussion below, it will be clear that this method may suffer from
data imbalance in an unusual way: by favoring the positive class.

In the construction of the neighborhood N(·), no prior value of k is given, so the sizes of
all neighborhoods can be different. When the nearest neighbor of an element x belongs to
the opposite class, N(x) is empty. This point hints at the reason why the positive class may
gain the upper hand after application of Reconsistent. The condensation step of Reconsistent
consists of replacing entire neighborhoods of instances by one representative element. When
dealing with imbalanced data, the sizes of the neighborhoods may differ substantially between
classes. Due to the nearby location of elements of the opposite class, the construction of N(·)
of a minority instance is likely to be halted earlier than that of a majority element, which
results in large neighborhoods of negative instances and many small positive neighborhoods.
This makes for a relatively larger amount of positive elements to be selected and this difference
may even resonate in the absolute class sizes in S.

The same condensation step is used in both stages of the algorithm. This procedure is modified
in the new method, but differently for the two stages.

Modification of the first phase

We first discuss the modified version of the first phase of the algorithm. We refer to the
schematic description below for further clarification. The intermediate set S is constructed
by looking at the structural properties of the dataset. We ensure that the positive class does
not become the majority, by re-selecting additional negative elements if required. Obviously,
it is not necessarily the case that the positive class has become the majority. We therefore
also guarantee that, when the negative instances still outnumber the positive ones, the IR of
S does not exceed that of T . Both measures boil down to re-selecting removed instances and
ReconsistentImb needs to decide which instances are most eligible for this purpose.

As has been done before, we first process all data and store information about each element,
which can later be used to decide whether or not to remove that instance. We still use the
neighborhoods N(·) and the overall order in which elements are considered remains the same
as well. However, when considering an element x, we do not explicitly remove all neighbors
in N(x) from both S and all neighborhoods in which they appeared. We simply note that
a neighbor y would have been removed by the original algorithm, by reducing the variable
nz, which represents the current size of the neighborhood, for all elements z having y as
neighbor, and increasing ry. The latter value keeps track of how often y would have been
removed, i.e. how often it was located within a neighborhood of elements that was replaced
by a representative instance. It is a measure of how internal this element is located in its
class. The r-values will be used in the reselection criterion. The element x itself would not
have been removed by the original algorithm, nor will our new method do so.

The method halts when nx = 0 for all elements, i.e. when all simulated neighborhoods are
empty. The set S is initialized by elements that were either chosen as representative points
at some point, for which the r-value equals zero or the initial neighborhood was empty. This
final type of instances were automatically selected by the original method as well. Next, the
class distribution of S is determined and, if required, the appropriate measures are taken, by
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adding elements in increasing order of their r-values. We use this order, since these values
express how internal elements are and we want more internal points to be less likely candidates
for reselection to preserve the condensing nature of this method.

To summarize, the absence of positive dominance and an overly large IR after the first phase
is obtained by replacing the original setup by the following procedure.

1. Initialization: (∀x ∈ S)(rx = 0).

2. For each element x ∈ S: construct its neighborhood N(x) and store the size nx of this
set.

3. Determine the element x ∈ S for which nx is largest, subject to rx = 0.

4. Ensure that x is never removed from S.

5. For all elements y ∈ N(x):

(a) Decrease nz by 1, when y ∈ N(z).
(b) Increase ry by 1.

6. Repeat steps 3-5 until
(∀x ∈ S)(nx = 0)

or until there are no more candidate elements left.

7. Define S as the set of elements x for which at least one of the three conditions below
holds:

• rx = 0.
• x has been protected from removal.
• The initial value of nx was zero.

8. Assess the class distribution within S. Reselected elements are added in order of in-
creasing r-values.

• If the positive class is the majority, add additional negative instances until S is
perfectly balanced.

• If the negative class is the majority and IRS > IRT , add additional positive in-
stances until IRS ≤ IRT .

It should be clear that the same selection criterion as the original algorithm is used in step 3.
Elements are being selected based on the current size of their neighborhoods, as if some of
their neighbors would have removed. When rx = 0, the element has itself not been marked
for removal yet.

Modification of the second phase

In this step, the set of misclassified instances M is used to enhance the classification perfor-
mance of the final set S. The original method adds elements of M to S, after the set has been
condensed by the same procedure as before. However, we feel that in order to improve the
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classification performance, we should not necessarily add misclassified instances, but rather
determine which elements in the entire dataset may be more useful for this purpose. In par-
ticular, we would like to select elements which are able to classify a large number of instances
in M correctly and do not lead to a lot of further misclassifications. This should make it less
likely for majority elements taking part in the misclassification of minority instances to be
selected.

For each instance x ∈ M , two neighborhoods Nown(x) and Nother(x) are constructed. The
same construction as before is used. Nown(x) is initialized by the nearest same-class neighbor
of x and consists of elements belonging to l(x). Similarly, Nother(x) contains elements of the
opposite class and its construction is initialized by the nearest neighbor of this class. When
an instance y is used as neighbor, the values nown(y) or nother(y) are updated accordingly.
They represent how often an element is contained in one of the two types of neighborhoods
and indicate how useful this instance would be in improving the classification of elements in
M . For instance, majority elements located near many minority instances, are assigned a
high value of nother(·), which makes it less likely for them to be selected.

Each instance x ∈M contributes at most one element to S. An element of Nown(x) is added
to S, which is chosen as the one with the highest value of nown(·) − nother(·), provided this
element had not been selected in this stage before. When the instance was present in the set
S of the first phase, we add a back-up element, namely the one with the next largest value
of nown(·)−nother(·) and continue this search until a suitable element has been found. When
all instances in Nown(x) were already contained in S, x itself is selected. The addition of a
back-up element when the first candidate was already present in S is motivated by the fact
that x was misclassified when S was used as prototype set, which we aim to resolve. When
the first candidate was not present in S, but was selected by a previous instance in this step,
no back-up element is added, as the selected instance can prove its uses for both elements of
M . The elements of M are considered in decreasing order of the sizes of Nown(·).

We present a schematic description below.

1. Initialize M as the set of misclassified instances when classifying T with kNN and S as
prototype set.

2. For each element x ∈M : construct the two neighborhoods neighborhoods Nown(x) and
Nother(x). Keep track of the values nown(·) or nother(·).

3. For each instance x ∈M :

(a) Add the element y ∈ Nown(x) with the highest value of nown(·)− nother(·) to S.
(b) If this instance was already present in S after the first iteration, select a back-up

element.

8.6 FRPS

The final IS method that we consider in this work is Fuzzy Rough Prototype Selection (FRPS)
[107]. It is an incremental algorithm and performs edition by using a wrapper approach. This
method uses fuzzy rough set theory [28] in its construction of S. Only elements having
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a significant contribution to the global performance of the classifier are selected. These
are elements that have a sufficiently high prediction ability. Noise on the data is therefore
removed.

The set T is interpreted as a decision system (T,A∪ {l}). In the context of IS, the attribute
set A corresponds to the observed features and the decision variable l to the class label. For
an element x ∈ T , a(x) and l(x) represent the value of the attribute a and the class label
respectively. Before describing the FRPS algorithm, we briefly recall a number of important
concepts from rough set and fuzzy rough set theory.

Rough set theory [82] introduces the following notions:

Indiscernibility relation: this equivalence relation is defined as

Rind = {(x,y) | ∀a ∈ A : a(x) = a(y)}.

Rind relates elements that can not be distinguished from each other based on the at-
tribute values. The equivalence class of an element x ∈ T is given by

[x]Rind
= {y | ∀a ∈ A : a(x) = a(y)}.

Lower approximation: a concept is represented as a subset C ⊆ T to which elements may or
may not belong. The lower approximation Rind ↓ C contains elements that definitely
belong to the concept. These are elements that do not only belong to C themselves, but
every element that is indiscernible from them belongs to C as well. This means that
their equivalence class under the relation Rind is fully contained in C. In particular,

Rind ↓ C = {x ∈ T | [x]Rind
⊆ C}.

Upper approximation: for a concept C, the upper approximation Rind ↑ C contains the
elements that possibly belong to the concept. For x ∈ T , this is the case when there
is at least one element that is indiscernible from x ∈ T belonging to C, even when
x ∈ T does not belong to C itself. This means that the equivalence class of x under the
relation Rind and the set C have a non-empty intersection. In particular,

Rind ↑ C = {x ∈ T | [x]Rind
∩ C 6= ∅}.

Rl: the equivalence relation determined by the decision variable. This relation is defined as

Rl = {(x,y) | l(x) = l(y)}.

When l represents the class label, the equivalence classes of Rl correspond to the classes
in T .

Positive region: the set of elements for which the decision variable can be predicted unam-
biguously based on the attribute values. For an element x, this is the case when all
elements that are indiscernible from it have the value l(x) for the decision variable.
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When l represents the class label, this means that all elements having the same values
for all features as x also belong to the same class as x. In particular,

POS =
⋃

x∈T
Rind ↓ [x]Rl

=
⋃

x∈T
{y ∈ T | [y]Rind

⊆ [x]Rl
}.

When the decision system T attains a higher value of POS, this implies that it has a
higher predictive ability.

To model continuous attributes, rough sets may not be the optimal choice. The situation
a(x) = a(y) seldom occurs, resulting in possibly very small equivalence classes of the indis-
cernibility relation, that may even contain only one element. This restriction can be dealt
with by introducing notions from fuzzy set theory [128]. This leads us to fuzzy rough set
theory [28], in which the notions described above undergo a natural generalization.

We assume the values of all attributes to be normalized, i.e.

(∀a ∈ A)(∀x ∈ T )(a(x) ∈ [0, 1]).

The indiscernibility relation uses a triangular norm (t-norm) T. Fuzzy set theory defines a
t-norm as an associative and commutative operator

T : [0, 1]2 → [0, 1],

that satisfies
(∀x ∈ [0, 1])(T(x, 1) = x)

and
(∀x, y, z ∈ [0, 1])(x ≤ z ⇒ T(x, z) ≤ T(y, z)).

Different distance measures are used for continuous and discrete attributes. When a ∈ A is
a continuous attribute, the distance function δa is defined as

(∀x,y ∈ T )(δa(x,y) = (a(x)− a(y))2)

and when it is discrete as

(∀x,y ∈ T )
(
δa(x,y) =

{
1 if l(x) = l(y)
0 otherwise

)
.

Since the decision variable is discrete, the relation Rl remains unchanged. In other words,

Rl(x,y) =
{

1 if l(x) = l(y)
0 otherwise.

Using the above, the indiscernibility relation is defined as

Rα
A(x,y) = T(max(0, 1− αδa(x,y))︸ ︷︷ ︸

a∈A

).
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As a consequence of its associativity, the operator T can unambiguously be generalized to
an operator on [0, 1]|A|. The parameter α ∈ [0,+∞[ is called the granularity and determines
how large differences in attribute values should be to be able to distinguish between elements.
When α is small, a higher value of δa(x,y) is required to discern between x and y, i.e. Rα

A(x,y)
will be small. This implies that elements need to differ more in their attribute values to be
able to make a distinction between them. In the extreme case of α = 0 we have

(∀x,y ∈ T )(R 0
A(x,y) = 0),

which means that no pair of elements of T can be discerned from each other based on their
attribute values in A. When α is larger, smaller differences in attribute values suffice to make
this distinction.

A concept in rough set theory is represented by a crisp subset C ⊆ T . In fuzzy rough set
theory this generalizes to a fuzzy set C, represented by its membership function C : T → [0, 1].
The fuzzification of the lower approximation uses a fuzzy implicator I. This is an operator

I : [0, 1]2 → [0, 1],

that is decreasing in its first argument, increasing in the second and satisfies the boundary
conditions

I(1, 0) = 0, I(1, 1) = 1, I(0, 0) = 1 and I(0, 1) = 1.

The lower approximation of a concept C by means of Rind is a fuzzy set defined by the
mapping

(Rind ↓ C)(x) = inf
y∈T

I(Rα
A(x,y), C(y)).

The lower approximation expresses to which extent elements indiscernible from x belong to
the concept C. The upper approximation uses a t-norm and is given by the fuzzy set

(Rind ↑ C)(x) = sup
y∈T

T(Rα
A(x,y), C(y)).

The upper approximation expresses to which extent there is at least one element indiscernible
from x belonging to the concept C. Several choices are possible for the operators T and I.

The positive region expresses to which extent the class of an element x can be correctly
predicted based on the attribute values, i.e. by elements that are indiscernible from x. The
positive region is a fuzzy set, to which the membership degree of x ∈ T is given by

POS α
A(x) = min

y∈T
(Rind ↓ [x]Rl

)(y)

= min
y∈T

I(Rα
A(x,y), [x]Rl

(y))

= min
y∈T

I(Rα
A(x,y), Rl(x,y)). (8.3)

In the development of FRPS, a new measure α(x) is introduced, representing the minimal
value needed for α such that x fully belongs to the positive region, i.e. POS α

A(x) = 1. For
each x ∈ T , this measure is defined as

α(x) = sup{α ∈ [0,+∞[ | POS α
A(x) < 1}.
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The value α(x) is used as a measure for the predictive ability of an element, since a small
value of α(x) indicates that x already fully belongs to the positive region POS α

A for small
values of α. This means that elements that are indiscernible from it have the same class, so x
can be considered as a typical element of its class, that contributes significantly to a correct
classification of new elements of that class. A higher value of α(x) indicates the presence of
elements that can not be discerned from x, but belong to a different class. From this we can
conclude that x is a noisy element or located in the boundary region between classes. In [107]
several ways to calculate α(x) are presented. The one that proved most successful and was
used in their experimental comparison of FRPS to other IS methods, is

α(x) = OWAW
1

m∑
i=1

δai(x,y)︸ ︷︷ ︸
y/∈[x]Rl

,

where OWAW is the Ordered Weighted Average (OWA) operator introduced in [121] that
uses the weight vector W = (w1, . . . , wp) with

(∀i ∈ {1, . . . , p})
(
wi = 2(p− i+ 1)

p(p+ 1)

)
.

An OWA operator sorts its arguments a1, . . . , ap in decreasing order into a vector and calcu-
lates the final result by taking the inner product of this sorted vector and the weight vector,
i.e.

OWAW (a1, . . . , ap) =
p∑
i=1

wibi,

where the vector (b1, . . . , bp) is the result of sorting the values in (a1, . . . , ap) in decreasing
order. With the above definition of W , it is clear that OWAW is a generalization of the basic
maximum operator.

The FRPS algorithm computes the values α(x) for each element x ∈ T and only selects
the elements with a sufficiently low value. The selection criterion uses a threshold τ and an
element x is selected when

α(x) ≤ τ.

This threshold is determined by the algorithm itself. The possible candidate values are the
computed values α(x). Each α(x) is tested by determining the number of elements y in T
that are classified correctly by the 1NN classifier, using the elements of S \{y} as prototypes,
where

S = {z ∈ T | α(z) ≤ α(x)}.

The value α(x) for which the highest number of correctly classified elements is obtained, is
chosen as threshold τ . When multiple elements lead to the best performance, the median of
these values is used, which means that a compromise is made between a too high and too low
reduction.

In [108], the FRPS algorithm used an alternative fuzzy rough quality measure γ instead of
the α values. A comparative study conducted by the authors resulted in their use of the lower
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approximation

∀x ∈ T : γ(x) = (Rind ↓OWA [x]Rl
)(x)

= OWAWmin
y∈T

I(Rind(x,y), Rl(x,y)) (8.4)

where the OWA weight vector Wmin = (w1, w2, . . . , wn) is given by

(∀i ∈ 1, . . . , n)
(
wi = 2i

n(n+ 1)

)
, (8.5)

which corresponds to a generalization of the global minimum operator. Candidate sets S are
now constructed as

S = {x ∈ T | γ(x) ≥ τ},

where the threshold τ is computed by FRPS itself in an analogous way as described above.
Note that the threshold is now used as a lower rather than upper bound, as higher γ values
correspond to higher membership to the lower approximation, which is a contraindication of
an element being noise.

In the experimental study, we use this version, as it is the one that has been modified for
imbalanced datasets by its own developers and has been further adapted in this work. The
t-norm that was used, in the Lukasiewicz t-norm TL which is defined as

(∀x, y ∈ [0, 1])(TL(x, y) = max(0, x+ y − 1)).

FRPSImb
The developers of FRPS have already proposed a modified version of their method for im-
balanced data in [110] and called it FRIPS. Similar to what we have done for a number of
methods presented in this work, the accuracy was replaced by the AUC measure to determine
the optimal threshold value, again using the 1NN classifier to calculate this value. As noted
in Section 1.2.2, the AUC of 1NN can easily be computed using the formula TPR+TNR

2 .

We have made one additional modification to the FRIPS algorithm, which has proven to
enhance its performance on the imbalanced datasets included in our experimental study. Our
method is denoted as FRPSImb. Instead of using the general OWA weight vector as in (8.5),
we use different vectors WP and WN when determining the γ values for positive and negative
elements respectively.

For the positive class, we have set

WP =
(

0, . . . , 0, 2
r(r + 1) ,

4
r(r + 1) , . . . ,

2(r − 1)
r(r + 1) ,

2
(r + 1)

)
,

where the value r is defined as d|Pos| + γ(|Neg| − |Pos|)e and the parameter γ was set to
0.1 in our experiments. Only the last r positions of WP contain strictly positive weights. As
r is at most equal to the number of negative instances in T , it implies that the first |Pos|
positions of WP are guaranteed to be set to zero.
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For the negative instances, we use

WN =
(

0, . . . , 0, 1
2p − 1 ,

2
2p − 1 , . . . ,

2p−2

2p − 1 ,
2p−1

2p − 1

)
.

The value p represents the cardinality of the positive class. The first |Neg| weights in this
vector are set to zero by definition. Due to its exponential nature, WN can quickly be
approximated by the vector

WN =
(
. . . ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2

)
.

As a result of the first number of zero positions in both WP and WN , it is guaranteed that
elements of the same class as x do not contribute to the calculation of its membership degree
to the lower approximation. This follows from the fact that Rl(x,y) = 1 when both arguments
belong to the same class. As a result, the value of the implicator in (8.4) is 1, placing it at the
beginning of the ordered sequence used by the OWA operator, pairing it with a zero weight.
The final choice of these weight vectors followed from an earlier comparative study which
included several other candidate vectors.
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Introduction to Part III

The final part of this work is comprised of a large-scale experimental study, assessing the
strength of ISImb as well as its competitiveness to several state-of-the-art methods dealing with
class imbalance. It also provides some general guidelines for optimal imbalanced classification.

In Appendix A, a detailed description of all 102 imbalanced datasets upon which the methods
are executed can be found. For preprocessing methods, the data is subsequently classified
by three different classifiers, 1NN, C4.5 and SVM, which have been introduced in Section
1.1 together with their respective parameters. We recall from Section 1.2.3 that we focus on
the geometric mean g and the AUC as evaluation measures when reporting the results of our
experiments.

In Chapter 9, we compare each ISImb method to its original IS version, so as to verify whether
the proposed adaptions lead to an increased performance. The overall ranking of the new
methods is studied and all methods are compared to the baseline classification without pre-
processing as well.

Chapter 10 concerns the interaction of ISImb with SMOTE, the oversampling technique de-
scribed in Section 2.1.2. In particular, we assess whether an additional balancing of the
datasets by SMOTE after application of ISImb can further improve the performance of the
latter in the classification process.

In Chapter 11, we consider the application of the original IS method after an initial balanc-
ing of the dataset by SMOTE. This setup is in the spirit of the hybrid resampling method
SMOTE-ENN ([7] and Section 2.1.3).

Finally, Chapter 12 presents a comparison of the state-of-the-art resampling methods that
were discussed in Section 2.1.

In each of these four chapters, five of the top performing methods from the studied setting
are selected and included in a global comparison executed in Chapter 13. The best methods
among this group are further compared with other approaches dealing with data imbalance,
namely cost-sensitive learning (see Section 2.2) and EUSBoost (see Section 2.3).
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9 Comparing ISImb with IS and baseline
classification

The goal of our first set of experiments is twofold: we compare the new ISImb methods both
to their original IS form as well as to the baseline classification by the three classifiers 1NN,
C4.5 and SVM when no preprocessing is applied.

Both IS and ISImb are executed as preprocessing steps on all 102 datasets. The data is
subsequently classified by each of the three classifiers, of which the behavior is evaluated by
both the AUC and g. We remind the reader that we always use 5-fold CV as validation
scheme, as discussed in Section 1.4.

The experimental results for the AUC can be found in Tables 9.1, 9.2 and 9.3, which present
these values for 1NN, C4.5 and SVM respectively. The corresponding results for g are dis-
played in Tables 9.4-9.6.

To compare each ISImb method with the corresponding IS algorithm, we use the Wilcoxon
test (Section 1.3.1) to test for significance in the observed differences in the classification
results. This test is conducted at the 5% significance level, meaning that we conclude that
the methods are statistically significantly different when the p-value yielded by the test is
lower than 0.05. The reported results correspond to the setting ‘best vs worst’, comparing
the method attaining the highest value for the evaluation measure to the one attaining the
lowest. This means that we have chosen not to fix the comparison to ‘ISImb vs IS’ as the
original method sometimes yields higher results than our methods.

Every ISImb method is also compared to the baseline classification results for each classifier
without preprocessing. We again use the Wilcoxon test to test for statistical significance,
where the reported results correspond to the comparison of the best versus the worst per-
forming method.

Finally, for each combination of a classifier and evaluation measure, we compare the top 10
performing methods by means of a Friedman test (Section 1.3.2). When the p-value of this
test is lower than our predetermined significance level α = 0.05, we conclude that significant
differences in results are observed within this group of 10 methods. If this is the case, the
lowest ranked method is used as control method in the Holm post-hoc procedure (Section
1.3.2). It is compared to each of the remaining 9 methods and when the adjusted p-value
pHolm does not exceed 0.05, it is concluded that the control method significantly outperforms
the method it is compared with at the 5% significance level.
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All tables also include the average reduction in the size of the training set obtained after the
preprocessing step for both IS and ISImb.

9.1 Discussion

We now proceed with the discussion of the results, which is divided into two main parts.
Firstly, we compare our new ISImb methods to the existing IS methods, to verify whether the
modifications made in this work have the aspired effect. In general, we are able to conclude a
clear dominance of the ISImb methods over IS for all classifiers and both evaluation measures.
We also assess the use of the ISImb preprocessing step compared to the baseline classification
in which the entire training set is used. We consider the condensation, edition and hybrid
approaches separately. Next, we study the relative ranking of the ISImb methods, in order to
decide which ones lead to the best results.

9.1.1 AUC and g

An important note regards the difference in the two evaluation measures. In general, we
mostly observe the same ranking of the methods when comparing the two measures for each
classifier. Nevertheless, the conclusions with regard to the baseline classification are stronger
when considering g, as more ISImb methods are able to significantly improve the baseline for
this value.

Especially for SVM, the conclusions in this final matter are rather different compared to the
ones drawn from the AUC results. An explanation of this phenomenon can be found in the
definitions of AUC and g. The former considers the probabilities p+ assigned to the positive
class, corresponding to how likely it is deemed that the instance at hand is positive. We refer
to Section 1.2.2 for a discussion of how these values are obtained for the discrete classifiers
in our study. The geometric mean uses the actual classification results. For SVM, we have
observed that a high AUC value can be obtained even when a large portion of the instances
is misclassified. This is a consequence of the fact that SVM mostly assigns higher values p+
to positive instances than it does to negative elements. When a method assigns a relatively
higher probability p+ to positive instances compared to the elements of the negative class, it
will attain a high AUC, as it correctly sorts the instances and will obtain a favorable trade-off
between FPR and TPR for any threshold used in the simulated classification process in the
calculation of this value. However, SVM is still a discrete classifier and it does not explicitly
use such a threshold in its classification process. Positive instances can still fall on the wrong
side of the constructed hyperplane and be misclassified, even when they are assigned relatively
high p+ values.

For SVM, we will therefore direct more focus to g, not necessarily disregarding the AUC
values, but rather keeping in mind that the geometric mean may model this classifier more
appropriately. The behavior of the other classifiers differs less between the two evaluation
measures, as their definition of p+ is more closely related to the actual decision procedure in
their classification process.

We note that a similar discussion was held in [31]. The authors stressed that the possible
discrepancy between conclusions drawn from AUC values and classification results are indeed
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due to the fact that the former model the ability of a classification model to yield appropriate
relative differences between instances from the two classes, i.e. its ability to discriminate well
between positive and negative elements. Even when the model achieves the latter goal and
attains a high AUC value, this is not necessarily reflected in its behavior in the classification.

9.1.2 Condensation methods

The general aim of condensation methods is not necessarily the improvement of the classifi-
cation performance, but rather to maintain the same performance level with a considerable
reduction in the number of training instances. This discussion regards the methods CNNImb,
FCNNImb, GCNNImb, MCNNImb and RNNImb from Chapter 4, MSSImb from Chapter 6 and
POPImb, PSCImb and ReconsistentImb from Chapter 8.

Reduction

The reduction obtained by the condensation ISImb methods is quite substantial and mostly
at the same level as the original IS method. Only for ReconsistentImb we observe a large drop
in reduction, yielding an average value of 42.06% compared to the 61.54% average reduction
obtained by Reconsistent. For both MSS and MCNN, ISImb attains a higher reduction than IS.
Excluding POPImb (50.62%) and ReconsistentImb, the reductions of the condensation methods
are among the highest within the group of 33 ISImb methods. Apart from the condensation
methods, some hybrid procedures, like the optimization algorithms from Chapter 5, are also
able to considerably reduce the size of T .

Classification

It is important to verify that the reduction does not come at too high a cost, i.e. that it
does not lead to a considerable drop in classification performance. For some of these ISImb
methods, we can conclude the opposite, as they achieve this reduction while still significantly
improving the results of the classification process.

NN-based methods

The results of FCNNImb, CNNImb and GCNNImb are statistically equivalent to those of
FCNN, CNN and GCNN respectively. FCNNImb significantly improves the g value of 1NN.
For the AUC of 1NN and g of SVM, this method attains equivalent results to the classifier
without preprocessing, but in the classification by C4.5 or when evaluating SVM by the AUC,
it performs significantly worse.

For CNNImb and GCNNImb, the results obtained by the new methods are either equivalent
to or significantly worse than those of the baseline classifier. In particular, the g values of
GCNNImb are always equivalent to those of the baseline classifier, while its values for the
AUC are shown to be significantly worse. CNNImb provides equivalent results for 1NN for
both evaluation measures and for the g value of SVM. For the other combinations, its results
are significantly worse than the baseline. Equivalence in classification performance is an
acceptable result for condensation methods, but when a significant decrease is observed, the
method is too forceful in its removal of redundant elements. We remark that the original IS
methods also resulted in a considerable decrease in classification performance.
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The results of the remaining two NN-based condensation methods, MCNNImb and RNNImb,
show that these methods significantly outperform the original IS methods. They both at-
tain high values for the reduction, namely 97.47% and 90.60% respectively. However, their
results in the classification are often significantly worse than those of the classifiers without
preprocessing. MCNNImb attains an equivalent g value as 1NN and significantly improves
this value for SVM, but performs significantly worse than the baseline classifier in all other
cases. RNNImb is only able to obtain equivalent results when considering g for SVM.

POPImb

The POPImb method does not significantly differ from the original IS algorithm. No significant
differences are found in the comparison of POPImb to 1NN, but it does significantly outperform
C4.5 and SVM evaluated by g. This coincides with and exceeds the goal of a condensation
method, but due to its close relation to the original algorithm, these results should not be
entirely attributed to the modifications we made in this work and may be due to the initial
strength of POP itself.

MSSImb

MSSImb attains a higher reduction than MSS, namely 74.46% compared to 68.31%. At the
same time, it significantly improves the g values of this original method for all classifiers and
its AUC for 1NN. In the remaining cases, its results are also higher, but the differences could
not be concluded to be significant.

Comparing it to the baseline classifiers, MSSImb significantly improves the g values of all
three and the AUC of 1NN. With respect to the AUC of C4.5, no significant differences can
be concluded. The AUC of MSSImb in the classification by SVM is very close to that of the
classifier itself, but the conclusion from the statistical analysis is that SVM performs signifi-
cantly better. Overall, we still conclude that MSSImb achieves both goals of a condensation
method.

ReconsistentImb

The reduction of ReconsistentImb (42.06%) is moderate compared to the other condensation
methods and is considerably lower than that of Reconsistent (61.54%). On the other hand, it
does always significantly improve the results of the latter method. Furthermore, the statistical
tests with respect to its results in the classification show that these are always either equivalent
to or significantly better than those of the classifier without preprocessing.

PSCImb

The final condensation method is PSCImb. It always significantly improves the original
method and yields an average reduction of 86.10%, which is slightly lower than that of PSC
(87.16%). Its g values are significantly better than those of 1NN and SVM and equivalent
to the value obtained by C4.5. Equivalent AUC results are found for both 1NN and C4.5,
but PSCImb yields a significantly lower value for this evaluation measure than SVM without
preprocessing.
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Conclusion

The five NN-based condensation methods do not always show an improvement on their original
forms and they do not perform as well as hoped in the overall classification. This may be
due to the simple nature of these methods. They are all fairly basic and may therefore fail to
transfer well to the setting of imbalanced data.

On the other hand, the results of POPImb show that this is a condensation method well-
adjusted to the context of class imbalance, but since it can not be proven to be significantly
different from POP, we feel that we can not credit this behavior to our modifications.

The remaining methods, MSSImb, ReconsistentImb and PSCImb exhibit very strong results,
substantially reducing the dataset while maintaining the same level of classification perfor-
mance or even improving it. The latter implies that these methods surpass the general goals
of condensation algorithms. This is an immediate result of our modifications, as all three of
these methods have been shown to outperform the original IS methods as well.

9.1.3 Edition methods

Editing focuses on the removal of noise on the data in order to increase the classification
performance. A high reduction is not explicitly aspired.

NN-based methods

The NN-based editing methods are ENNImb, All-kNNImb and MENNImb. Their reductions
(1.74%, 6.39% and 13.73% respectively) are always lower than those of the original IS meth-
ods. In the classification, they significantly outperform the latter for all combinations of the
classifiers and evaluation measures.

ENNImb is proven to significantly outperform the baseline classification by 1NN. It also yields
a significantly higher g value for SVM than the classifier without preprocessing. In all other
cases, it is found to be equivalent to the baseline classifier. Both All-kNNImb and MENNImb

also significantly improve the g value for SVM. For the other classifiers, their g values are
found to be equivalent to the classifier without preprocessing, as well as their AUC value for
1NN. For C4.5 and SVM evaluated by the AUC, these methods perform significantly worse
than the baseline.

MoCS

The reduction of MoCSImb (2.82%) and MoCS (2.63%) are at the same level, but the ISImb
method always significantly improves the IS method in the classification, except for SVM
evaluated by the AUC, where their results are equivalent. The g values of all classifiers are
significantly improved by MoCSImb as well. The AUC is only significantly better for 1NN,
for the other classifiers the values of MoCSImb are equivalent to those of the baseline.

ENN-like methods

These are all methods discussed in Chapter 7: ENNThImb, ENRBFImb, NCNEditImb and
RNGImb. They are shown to always significantly improve the corresponding IS methods.
Their reductions are always lower than those of the latter.
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ENNThImb and RNGImb significantly improve the g values for all classifiers and the AUC
value of 1NN. Their AUC values for C4.5 and SVM are equivalent to those of the classifier
without preprocessing. ENRBFImb only significantly improves g of SVM, in all other cases
its results are equivalent to the baseline. The conclusions for NCNEditImb are the same, but
this method is also able to significantly improve the AUC of 1NN.

FRPS

The reduction of the ISImb method (25.3%) is slightly higher than that of the IS method
(23.39%). The behavior of the former in the classification is always significantly better than
that of the latter, except for SVM, where their results are found to be equivalent, although
the values of ISImb are higher than those of IS.

With respect to the classification without preprocessing, FRPSImb significantly improves the
g value of SVM and yields equivalent results in all other cases.

Conclusion

Overall, we can conclude that the editing ISImb methods significantly improve their original
IS methods in terms of classification performance. The observed reductions are mostly low.

The NN-based editing methods do not show the desired classification performance and have
been shown to decrease the results of the baseline classifier in some cases. In the above section
on condensation, we also concluded that the NN-based ISImb methods do not perform as well
as other methods proposed in this work.

Among the editing methods, FRPSImb yields the highest average reduction (25.3%). It never
worsens the performance of the classifier, but was only able to significantly improve it for
SVM evaluated by g. We can therefore also not conclude that this is an optimal editing
method.

The results for MoCSImb and the ENN-like editing ISImb methods are the best ones encoun-
tered in this section. They show that these methods are able to significantly improve the
performance of the classifier without preprocessing in a variety of settings.

9.1.4 Hybrid methods

The aim of these algorithms envelops the goals of both condensation and edition methods:
they seek to increase the classification performance, while still attaining a reasonable reduc-
tion.

Optimization algorithms

These are the eight methods presented in Chapter 5: GGAImb, SGAImb, IGAImb, CHCImb,
SSMAImb, CoCoISImb, RMHCImb and ExploreImb. All methods significantly outperform the
original methods for the three classifiers and both evaluation measures. Especially for the g
values, large absolute differences between ISImb and IS are observed.

The average reductions are always lower than those of the corresponding IS methods, but
should still be considered as high by any standard, as they are all well above 80%. Solely for
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RMHCImb and RMHC are the average reductions exactly the same. This should come as no
surprise, as the cardinality of the final set S is fixed by a parameter of these methods, which
was set to the same value for both algorithms.

In the classification by 1NN, all methods always significantly improve the baseline, except
for ExploreImb, of which the AUC value is found to be statistically equivalent to that of the
classifier without preprocessing. The g values of C4.5 and SVM are significantly improved by
all methods as well. Every method also significantly outperforms C4.5 based on the AUC,
except CoCoISImb, RMHCImb and ExploreImb which yield equivalent results as C4.5 itself.
Finally, the AUC values of SVM are significantly lower for SSMAImb, CoCoISImb, CHCImb and
ExploreImb. The other four methods attain equivalent results as SVM without preprocessing.

Reachable(·) and Coverage(·) based methods

These methods are DROP3Imb, CPrunerImb, NRMCSImb, HMNEIImb and ICFImb. ISImb
always significantly outperforms IS for DROP3Imb, NRMCSImb and ICFImb. For the other
two methods, the AUC results for C4.5 and SVM and the g value of C4.5 are concluded to
be equivalent. For the remaining cases, ISImb is still significantly better than IS.

Apart from the fact that they are all large, no general conclusion with regard to the average
reductions can be drawn. Both DROP3Imb and NRMCSImb attain lower values than the
corresponding IS methods, namely 81.63% and 94.07% compared to 95.61% and 99.35%
respectively. On the other hand, the average reductions of HMNEIImb and ICFImb have
increased, namely 79.50% and 87.17% compared to 64.62% and 81.79%. The reductions of
CPrunerImb (96.14%) and CPruner (96.08%) are roughly the same.

The AUC value of SVM is always significantly decreased by these ISImb methods. DROP3Imb
is able to significantly outperform all other combinations of the baseline classifiers and eval-
uation measures. The same holds for HMNEIImb, except that its AUC value for C4.5 is
equivalent to that of C4.5 itself. NRMCSImb and ICFImb both significantly improve 1NN
for both evaluation measures, as well as the g value of SVM. For C4.5, their g values are
found to be equivalent to that of C4.5, but their AUC results are significantly worse. Finally,
CPrunerImb does not perform as well. This method is only able to significantly improve g for
SVM. Its results for 1NN are equivalent to the baseline, while they are significantly worse for
C4.5.

IB3

The average reduction of IB3Imb is a lot higher than that of IB3, namely 88.24% compared
to 73.89%. Moreover, the ISImb method always significantly improves the IS method, except
for C4.5 evaluated by the AUC, where they yield equivalent results. IB3Imb significantly
outperforms all baseline classifiers based on their g values. For the AUC, its results are
significantly better for 1NN, equivalent for C4.5 and significantly worse for SVM.

PSRCG

The ISImb method attains an average reduction of 85.68%, which is a high value, but lower
than that of the corresponding IS method (93.77%). On the other hand, PSRCGImb con-
sistently outperforms PSRCG and these differences are always concluded to be statistically
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significant. The g values of all classifiers are significantly improved as well. For the AUC,
PSRCGImb attains equivalent results to 1NN without preprocessing, while for C4.5 and SVM
its values are significantly lower.

Conclusion

All optimization algorithms perform excellently. They obtain high average reductions and
are able to significantly improve the baseline classification.

The Reachable(·) and Coverage(·) based methods from Chapter 6 also perform very well,
except for CPrunerImb, of which the average reduction of 96.14% may be too steep to allow
for the construction of a suitable classification model.

The two remaining hybrid algorithms, IB3Imb and PSRCGImb, also result in high average
reductions and show a good performance in the classification as well, especially when evaluated
by g.

9.1.5 Comparison of ISImb methods

We now consider the overall ranking of the ISImb methods. The discussion is divided among
the three classifiers.

1NN

The top performing methods for both AUC and g are the optimization algorithms from
Chapter 5, apart from ExploreImb. Others are hybrid approaches such as IB3Imb, DROP3Imb
and NRMCSImb. We note that all methods in the top 10 correspond to a reduction of almost
or at least 80%.

The Friedman tests allow us to conclude that significant differences among the top 10 meth-
ods exist. SSMAImb and GGAImb received the lowest Friedman rank for the evaluation by
AUC and g respectively. Both are genetic algorithms. For AUC, no significant differences
are observed between SSMAImb and CHCImb and SGAImb, but SSMAImb does significantly
outperform the remaining seven methods in the top 10, including the three other genetic al-
gorithms GGAImb, IGAImb and CoCoISImb. When considering g, GGAImb yields equivalent
results to SGAImb, CHCImb and SSMAImb, but outperforms CoCoISImb, IGAImb and the
remaining methods in the top 10.

Finally, when considering the actual improvement on the classification without preprocessing,
Table 9.1, representing the AUC results, shows that the top 19 methods all significantly
outperform 1NN. The baseline classifier is itself significantly better than two of our methods,
RNNImb and GCNNImb. No significant differences between 1NN and the twelve other ISImb
methods can be concluded. For g, the fifteen highest performing ISImb methods in Table 9.4
all significantly improve 1NN and nine more can be found further down. Only one method
performs significantly worse than 1NN, namely RNNImb. The remaining eight methods do
not show significant differences with 1NN.
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C4.5

Similarly to 1NN, the best performing methods for C4.5 are the optimization algorithms. The
further overall order also largely coincides with that of 1NN. The NN-based condensation
methods are prominently found at the bottom of both Table 9.2 and 9.5.

Both Friedman tests lead us to conclude that significant differences can be found among
the top 10 methods and both assign the lowest rank to CHCImb. For AUC, this method
does not perform better than the other genetic algorithms IGAImb, GGAImb, SGAImb and
SSMAImb, nor than the hybrid algorithm DROP3Imb. When evaluating the performance by
g, DROP3Imb is outperformed, but the four genetic algorithms listed above remain equivalent
to CHC.

Compared to the case of 1NN, fewer methods are able to outperform C4.5. For the AUC, this is
limited to the six highest performing methods in Table 9.2. C4.5 without any preprocessing
yields higher AUC values than eleven ISImb methods. Among them are the condensation
methods from Chapter 4, but also the editing methods MENNImb and All-kNNImb. For the
remaining sixteen methods, no significant differences in AUC with C4.5 were observed. With
respect to g, eighteen ISImb methods perform significantly better than C4.5, five perform
significantly worse and the remaining ten are found to be equivalent.

SVM

As we remarked in Section 9.1.1, the ranking of the methods when the classification is per-
formed by SVM differs strongly between Table 9.3, representing the AUC, and Table 9.6,
reporting g.

When evaluating the classification performance with AUC, the editing methods perform best.
The optimization algorithms, which yielded the best results for both 1NN and C4.5, are found
further down in the table. The Friedman test assigns the lowest rank to the editing method
MoCSImb, but it does not outperform other editing algorithms like ENNThImb, RNGImb,
FRPSImb, NCNEditImb or ENNImb. It also does not outperform the genetic algorithm IGAImb

or the condensation algorithm POPImb. However, the condensation method providing the
highest AUC value, MSSImb, is significantly improved upon.

Table 9.3 also shows that none of the ISImb methods perform significantly better than SVM
itself. The latter outperforms twenty of our methods and is found to be equivalent to the
remaining thirteen.

In Table 9.6, representing the results for g, a different tale is displayed. The overall ranking is
more closely related to that found for 1NN and C4.5, placing the genetic algorithms at the top.
The baseline result for SVM is found at the bottom. The Friedman test assigns the lowest
rank to SGAImb, which is shown to be equivalent to the other genetic algorithms CHCImb,
SSMAImb, GGAImb and IGAImb, but significantly outperforms the sixth genetic algorithm
CoCoISImb and the hybrid approaches NRMCSImb, IB3Imb, DROP3Imb and HMNEIImb. As
many as 29 ISImb methods significantly improve the g value of SVM and the remaining four
are found to be equivalent to it.
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Selection of best performing ISImb methods

The overall conclusion of this part of the experimental study is that ISImb is certainly stronger
than IS in its application to imbalanced data. Many methods are also able to significantly
improve the classification process, thereby achieving the main goal of this work.

Our aim is to select five ISImb methods to use in the final comparison between different settings
and state-of-the-art methods. These five algorithms should be among the top performing for
both evaluation measures and all classifiers. The genetic algorithms constitute the ideal
candidates. The only place where these methods do not take on the top positions is in
Table 9.3, which presents the AUC results for classification by SVM. Based on our discussion
on AUC and g above, combined with the evident dominance of the genetic algorithms for
SVM when evaluating its performance by g, we still feel that these methods are indeed the
best performing ones among the group of 33 ISImb methods. We have chosen to include
SSMA, CHC, SGA, GGA and IGA in the final global comparison that will be conducted in
Chapter 13. We did not choose the sixth genetic algorithm CoCoIS, as some of the others
have been shown to significantly outperform it.
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10 Interaction between ISImb and SMOTE

In this chapter we study the effect of an additional balancing of the dataset after the appli-
cation of ISImb. The balancing is achieved by the popular oversampling technique SMOTE
from Section 2.1.2. This setup has recently been used in [109] and [110] as well, where the
authors used their FRIPS method as a data cleaning measure before SMOTE, in order to
remove noisy elements from the dataset such that they can not take part in the construction
of new instances. Drawing from this idea, our editing methods may also be most suitable in
this setting, removing noisy elements before the oversampling is executed in order to improve
the SMOTE method.

On the other hand, condensation methods aim to remove redundant elements located at the
interior of the classes. Intuitively, the balancing performed by SMOTE is likely to fill up these
interiors again. For these methods, ISImb should not be regarded as a data cleaning step to
enhance SMOTE. Our experiments showed that the average imbalance within datasets after
preprocessing by condensation or hybrid methods is not large and the IR is often close to
1. The effect of balancing these datasets is therefore not large, but SMOTE can possibly
counteract an overly large reduction of positive instances and enhance the performance of
ISImb.

We have included all 33 ISImb methods in these experiments, executing ISImb followed by
SMOTE (ISImb-SMT). Tables 10.1-10.6 list the obtained results. One method, SSMAImb,
resulted in perfectly balanced datasets after its application, without requiring an additional
balancing step. Its results are listed for reference, but we stress that the setting SSMAImb-
SMT has not been executed, as the application of SMOTE on a balanced dataset is a void
operation.

Two separate research questions are studied. Firstly, we verify whether the performance of
ISImb methods can be enhanced by the additional oversampling step. We therefore compare
each proposed ISImb method with ISImb-SMT. Secondly, we also study the improvement the
new setting ISImb-SMT has on SMOTE itself. The significance of any observed differences is
verified by means of the Wilcoxon test, which is conducted at the 5% significance level. As
was done in the previous chapter, we report the p-values from the comparison between the
highest and lowest performing setting (‘best vs worst’).

As before, a Friedman test is executed to compare the top 10 performing ISImb-SMT methods
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for the six combinations of a classifier and evaluation measure. Significant differences in the
observed results are concluded, when the p-value of this test is lower than α = 0.05. In this
situation, the Friedman test is followed by the Holm post-hoc procedure, which compares the
lowest ranked method with the nine others.

The tables also report the reduction of both ISImb and ISImb-SMT. Due to the oversampling
conducted by SMOTE, the possibility exists that the size of the dataset has increased rather
than decreased. This is reflected in a negative value for the reduction. As an example, when
the reduction obtained by a method is -25%, this corresponds to an increase of 25% in the
number of instances.

We remark that we have not executed the analogous IS-SMT experiments. The reason for
this decision is that several IS methods can and do remove an entire class from T . This
renders the application of SMOTE on the resulting set S impossible, as it obviously can not
create elements of that class out of thin air. We therefore decided to compare ISImb-SMT
with ISImb itself.

10.1 Discussion

We divide this discussion between the different classifiers. Both research questions are ad-
dressed.

1NN

Tables 10.1 and 10.4 list the results after classification by 1NN. The top performing methods
are the optimization algorithms from Chapter 5. Both the values for AUC and g and the
results of the Wilcoxon test show that there is no real benefit in the SMOTE step. This is
a consequence of the fact that these ISImb methods yield average values for the IR that are
very close to 1, such that SMOTE does not have a large effect. It is important to remark that
these methods are the best performing among the ISImb and ISImb-SMT methods for 1NN
without needing an additional oversampling step. The real strength of their performance is
found in the application of ISImb.

Some methods do show a significant improvement of ISImb-SMT over ISImb. Among them are
eight out of nine of the condensation methods, which are significantly improved by SMOTE for
both AUC and g. MCNNImb forms the exception. These methods focus mostly on reduction
and not on classification performance. The additional balancing step is able to give the latter
a boost. Even after oversampling, the overall reduction of these methods relative to the
original dataset is still considerable.

Several editing methods also yield better results when they are followed by SMOTE. For
these algorithms, the difference in reduction between the two settings is very large. Indeed,
as editing ISImb methods they only remove a small portion of the dataset, such that the
imbalance in the resulting set is close to its original value. Applying SMOTE to these datasets
results in the creation of many instances in order to obtain the desired perfect balance.

For NRMCS and IB3, the setting ISImb-SMT performs significantly worse than ISImb itself for
both the AUC and g. The average IR values for these methods after ISImb are 1.81 and 3.99
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respectively, but bringing this number further down to 1 by SMOTE reduces the strength of
the preprocessed dataset rather than enhancing it.

To conclude this discussion, we also observe that several ISImb-SMT methods perform signifi-
cantly better than SMOTE, showing the positive effect of the preliminary ISImb step. For the
AUC in Table 10.1, this conclusion holds for eight methods: the hybrid approaches CHCImb,
SGAImb, GGAImb, RMHCImb and DROP3Imb and the editing methods ENNThImb, RNGImb

and ENNImb. As noted in the introduction, the latter can be considered as data cleaning
measures before the oversampling step. In Table 10.4 we observe that two additional hybrid
methods also improve the g values of SMOTE in the setting ISImb-SMT, namely IGAImb and
HMNEIImb.

C4.5

From Tables 10.2 and 10.5, we conclude that C4.5 shows mostly the same pattern in the
relation between ISImb and ISImb-SMT as 1NN does. The first notable difference is that
GGAImb is now significantly improved by SMOTE, whereas for 1NN no significant differences
were observed. Secondly, when considering the evaluation by AUC, several editing algorithms
gain the top positions for the setting ISImb-SMT. For g, these places are still mostly reserved
for the optimization algorithms.

Several ISImb-SMT methods improve the AUC and g values of SMOTE, but the differences
are never found to be significant. These methods are mostly the same as the ones that
significantly improve SMOTE for 1NN.

SVM

When evaluating the performance of SVM by AUC in Table 10.3, none of the ISImb methods
are significantly improved by SMOTE. Most methods do not show any significant differences
between ISImb and ISImb-SMT. For five methods, we observe that the results of ISImb are sig-
nificantly better than those of ISImb-SMT, namely for CPrunerImb, ExploreImb, HMNEIImb,
NRMCSImb and RNNImb. The g values on the other hand are significantly improved by the
SMOTE step for several ISImb, as presented in Table 10.6.

Contrary to 1NN and C4.5, the editing methods gain a clear upper hand in the setting ISImb-
SMT for both AUC and g. It is also interesting to note that the POPImb method performs
quite well and is the only method in the top 10 obtaining a decent reduction of the original
dataset. The Friedman tests show that it is not significantly outperformed by the best editing
methods either, which increase the size of the dataset considerably.

However, since all methods resulting in an increased size of the dataset can be found in the
upper part of Tables 10.3 and 10.6, an overall conclusion is that SVM benefits more from
oversampling the dataset than from undersampling it by ISImb. A similar conclusion will
be drawn in Chapter 12, where we evaluate and compare the state-of-the-art resampling
methods.

No ISImb-SMT methods are found to significantly improve the AUC value of SMOTE. Its g
value is significantly bettered by five methods, for all of which the ISImb step corresponds to
edition. This means that for SVM, removing noisy instances from the training set to prevent
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them from taking part in the construction of synthetic instances proves to be most beneficial
to improve SMOTE.

Conclusion

In general, we conclude that the best performing ISImb methods, which are the optimization
algorithms, often do not benefit from the additional balancing by SMOTE. For other methods
on the other hand, significant increases in performance are often observed.

We are also able to conclude that the SMOTE method can be significantly improved by
an initial ISImb step, revealing an additional useful application of our new methods. The
algorithms leading to these results are not limited to editing methods, but include hybrid
approaches as well. The latter performed best in the classification by 1NN. For the other
classifiers, the editing methods yielded better overall results.

Selection of best performing ISImb-SMT methods

Based on the results discussed above and presented in the subsequent tables, we have cho-
sen the following five methods for the final comparison in Chapter 13: ENNThImb-SMT,
MoCSImb-SMT, RNGImb-SMT, NCNEditImb-SMT and ENNImb-SMT. The ISImb methods
taking part in these combinations are all editing algorithms.

Based on the results of 1NN and C4.5, several optimization algorithms also constitute good
candidates for this selection, but since the application of SMOTE has little effect following
these algorithms, we decided not to use them. These ISImb methods have themselves already
been selected for the global comparison in the previous chapter.

As discussed above, the editing methods can be considered as data cleaning measures before
the oversampling and it will be interesting to compare them with other resampling techniques,
of which several also aim to make a well-advised selection of elements to use in the generation
of new instances, as described in Section 2.1.
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11 SMOTE-IS methods

In this chapter, we consider the application of the original IS methods after an initial balanc-
ing of the dataset by SMOTE. This setup is in the spirit of the hybrid resampling method
SMOTE-ENN, which was introduced in [7] and described in Section 2.1.3. This method has
shown a good performance in several experimental studies (e.g. [7], [71]). The goal of this
chapter is to verify whether ENN can be replaced by other IS methods.

We have executed each of the 33 original IS methods on all 102 datasets which have first
been perfectly balanced by means of SMOTE. The main idea behind the setup of SMOTE-
ENN in [7] is the posterior cleaning of the constructed dataset to compensate for the possible
overgeneralization of the minority class by SMOTE. In this way, the results of SMOTE are
aimed to be improved upon. To verify whether other IS methods can also achieve this effect,
we compare their values for AUC and g to those of SMOTE by means of the Wilcoxon test. As
before, we always compare the method attaining the highest value for the evaluation measure
to the one attaining the lowest.

Analogous to the previous chapters, a Friedman test is conducted on the top 10 methods for
each classifier and both evaluation measures. Finally, we also report the reduction, where, as
in the previous chapter, negative values correspond to an increase in the number of elements.
The oversampling step increases the size of T and IS may not be able to reduce it back to or
below its original size.

11.1 Discussion

Tables 11.1-11.3 present the AUC results and Tables 11.4-11.6 provide the corresponding
values for g. We remind the reader that all rows correspond to the setting where IS has been
executed on the SMOTE-modified datasets. In particular, the classification by 1NN, C4.5
and SVM has also been performed in this way. They therefore correspond to the results of
SMOTE itself.

Overall, we observe that methods that increase the size of the dataset provide the best
classification results. These are mostly editing methods, like ENN. Condensation methods do
not rank among the overall best performing methods, although the POP method does yield
good results for C4.5 and SVM. They do always lead to a considerable reduction, which is
one of their goals. They reduce the SMOTE-modified dataset in such a way that it is smaller
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than the original dataset as well. Hybrid approaches like the optimization algorithms yield
good results for 1NN, but are less prominently present among the top performing methods
for the other classifiers.

Improvement on SMOTE

The Wilcoxon test is performed to verify whether SMOTE-IS can improve SMOTE and
we conclude that it can. This behavior is most prominently present for 1NN. As many as
fifteen SMOTE-IS methods significantly improve both the AUC and g values of SMOTE.
These include all optimization algorithms discussed Chapter 4, apart from IGA. The hybrid
approach HMNEI is also found among them. The remainder of this group are editing methods:
RNG, MENN, ENNTh, All-kNN, NCNEdit, FRPS and also ENN.

Ten SMOTE-IS methods yield statistically equivalent AUC values as SMOTE for C4.5 in
Table 11.2. The IS methods taking part in these combinations are the editing methods All-
kNN, ENN, RNG, NCNEdit, MENN, ENNTh, MoCS and FRPS, the condensation algorithm
POP and the hybrid approach HMNEI. The remaining methods perform significantly worse
than SMOTE. Table 11.5 shows that the three editing methods All-kNN, MENN and ENNTh
significantly outperform SMOTE in the setting SMOTE-IS when evaluating C4.5 by g. Seven
methods perform equivalently to SMOTE and 21 significantly worse. Note that SMOTE-ENN
does not significantly outperform SMOTE, while combinations with other editing methods
do.

Considering the AUC of SVM in Table 11.3, only three SMOTE-IS methods, SMOTE-ENN,
SMOTE-MoCS and SMOTE-POP, are found to be equivalent to SMOTE, while the oth-
ers perform significantly worse. As for C4.5, when evaluating the classifier by g, some
methods again prove to be significantly better than SMOTE. These are SMOTE-MoCS,
SMOTE-NCNEdit, SMOTE-RNG, SMOTE-FRPS and SMOTE-POP. The three methods
using HMNEI, ENN and ENNTh in the IS step are concluded to be equivalent to SMOTE.
The remaining ones perform significantly worse.

Comparison among SMOTE-IS methods

For 1NN, no significant differences among the 10 best performing SMOTE-IS methods are
observed for both AUC and g. For the other classifiers, the Friedman test yields p-values
below 0.05, such that we can conclude that statistically significant differences are present in
the results.

ENN is clearly not the only IS method which can prove its uses in the setting SMOTE-IS.
With respect to C4.5 and SVM, several other editing methods also yield high classification
results. The lowest ranked method for these classifiers is always such an editing method, but
the Holm post-hoc procedure rarely concludes that the control method is significantly different
than most other editing algorithms. An exception to this rule can be found in Table 11.6,
evaluating SVM by g. In this case, SMOTE-MoCS is able to significantly outperform the
other top 10 methods, including SMOTE-ENN, at the 5% significance level.

Note however that the use of editing methods always results in an increase in the number
of instances in the dataset. SMOTE creates new elements to obtain a perfectly balanced set
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and the editing takes care of the removal of noisy instances, which rarely constitute a large
part of the dataset.

When the classification is performed by 1NN (Tables 11.1 and 11.4), the use of other IS
methods fundamentally different from ENN, like the optimization algorithms, results in a
considerable reduction of the size of the dataset while obtaining equivalent results in the
classification. The genetic algorithms yielding the highest results in these settings are able to
reduce the dataset by about 90%, while SMOTE-ENN leads to an increase in size of roughly
77.61%. When considering the storage requirements, which is an important aspect of the lazy
learner kNN, the genetic algorithms should therefore be favored.

Selection of best performing SMOTE-IS methods

Based on the classification results, we have chosen to use five editing methods in the setting
SMOTE-IS for the final comparison in Chapter 13. We do not use the optimization algorithms
in this setting, as they only appear among the top methods for 1NN. We have opted to include
SMOTE-HMNEI, SMOTE-RNG, SMOTE-MoCS, SMOTE-ENNTh and SMOTE-ENN.
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Table 11.1: Classification by 1NN after IS on SMOTE-modified datasets, evaluated by the
AUC. The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are
listed. When the p-value allows to conclude that a SMOTE-IS method is sig-
nificantly better than SMOTE, it is marked in bold. A Friedman test compares
the top 10 performing SMOTE-IS methods. Its p-value is 0.159391, such that we
can not conclude that the differences in results are statistically significant. The
last column presents the obtained reduction. Negative values correspond to an
average increase in size of the dataset.

Wilcoxon
AUC R+ R− p Friedman rank Reduction

CHC 0.8490 3714.5 1538.5 0.000279 5.2990 0.9722
HMNEI 0.8466 4299.0 954.0 ≤ 0.000001 4.7941 -0.0535
Explore 0.8446 3567.0 1584.0 0.000778 5.4167 0.9647
GGA 0.8437 3882.5 1370.5 0.000027 5.5686 0.9005
RNG 0.8431 4019.0 1234.0 0.000003 5.1275 -0.7163
RMHC 0.8428 3562.0 1589.0 0.000827 5.4657 0.8187
CoCoIS 0.8426 3509.5 1641.5 0.001512 5.8922 0.8413
SSMA 0.8415 3592.5 1660.5 0.001248 5.9657 0.9508
MENN 0.8414 3825.5 1427.5 0.000062 5.7745 -0.5461
ENNTh 0.8414 3798.0 1353.0 0.000034 5.6961 -0.5490
AllKNN 0.8410 3692.0 1459.0 0.000154 - -0.6373
SGA 0.8410 3603.5 1649.5 0.001102 - 0.9218
ENN 0.8400 3834.5 1316.5 0.000020 - -0.7761
NCNEdit 0.8390 3658.0 1493.0 0.000244 - -0.7225
FRPS 0.8344 3481.5 1669.5 0.002116 - -0.6703
MoCS 0.8307 3118.5 2032.5 0.065481 - -0.7533
1NN 0.8284 - - - - -0.8246
MSS 0.8274 2757.5 2393.5 0.535377 - 0.3604
RNN 0.8252 2878.0 2375.0 0.400224 - 0.8745
POP 0.8245 3749.5 1401.5 0.000069 - -0.3295
DROP3 0.8191 3213.5 2039.5 0.049858 - 0.8560
IGA 0.8185 3123.5 2027.5 0.063152 - 0.7840
CNN 0.8163 3774.5 1376.5 0.000048 - 0.7092
NRMCS 0.8150 3341.5 1911.5 0.016919 - 0.9774
CPruner 0.8116 3571.5 1681.5 0.001598 - 0.8450
FCNN 0.8109 3862.0 1391.0 0.000037 - 0.7555
ICF 0.8063 3958.5 1192.5 0.000003 - 0.7001
ENRBF 0.8063 3288.5 1964.5 0.026998 - -0.4315
IB3 0.7986 3508.5 1642.5 0.001565 - 0.6402
PSC 0.7939 4153.5 997.5 ≤ 0.000001 - 0.7600
MCNN 0.7489 4864.5 388.5 ≤ 0.000001 - 0.8319
PSRCG 0.7464 5025.0 228.0 ≤ 0.000001 - 0.8672
GCNN 0.6937 5227.0 26.0 ≤ 0.000001 - 0.8468
Recons 0.6823 4761.5 389.5 ≤ 0.000001 - -0.2804
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Table 11.2: Classification by C4.5 after IS on SMOTE-modified datasets, evaluated by the
AUC. The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are
listed. A Friedman test compares the top 10 performing SMOTE-IS methods.
Its p-value is smaller than 0.000001, such that we can conclude that significant
differences are present in the results. The p-values of the Holm post-hoc procedure
are listed comparing the lowest ranked method (SMOTE-ENN) to the others.
Significant differences are marked in bold. The last column presents the obtained
reduction. Negative values correspond to an average increase in size of the dataset.

Wilcoxon
AUC R+ R− p Friedman rank pHolm Reduction

AllKNN 0.8426 2851.5 2299.5 0.348922 5.0833 ≥ 0.999999 -0.6373
ENN 0.8412 2901.5 2249.5 0.268699 4.8627 - -0.7761
RNG 0.8411 3043.5 2209.5 0.163411 4.9216 ≥ 0.999999 -0.7163
NCNEdit 0.8393 3023.0 2128.0 0.129100 5.0931 ≥ 0.999999 -0.7225
MENN 0.8377 2687.0 2464.0 0.704379 5.3137 ≥ 0.999999 -0.5461
ENNTh 0.8369 2667.0 2484.0 0.755297 5.2941 ≥ 0.999999 -0.5490
HMNEI 0.8358 2519.0 2734.0 ≥ 0.999999 5.6814 0.374445 -0.0535
POP 0.8320 2423.0 2830.0 ≥ 0.999999 5.4461 ≥ 0.999999 -0.3295
C4.5 0.8315 - - - - - -0.8246
MoCS 0.8280 3125.5 2127.5 0.095431 7.4951 ≤ 0.000001 -0.7533
FRPS 0.8242 3012.0 2139.0 0.138767 5.8088 0.205158 -0.6703
CoCoIS 0.8100 3719.0 1432.0 0.000106 - - 0.8413
MSS 0.8094 3755.5 1395.5 0.000064 - - 0.3604
RMHC 0.8061 3658.0 1493.0 0.000244 - - 0.8187
ENRBF 0.8045 3566.5 1584.5 0.000783 - - -0.4315
IB3 0.7929 4118.0 1033.0 ≤ 0.000001 - - 0.6402
IGA 0.7922 4173.0 1080.0 ≤ 0.000001 - - 0.7840
GGA 0.7735 4357.0 794.0 ≤ 0.000001 - - 0.9005
SGA 0.7671 4274.0 877.0 ≤ 0.000001 - - 0.9218
CNN 0.7581 4653.0 498.0 ≤ 0.000001 - - 0.7092
PSC 0.7581 4680.5 470.5 ≤ 0.000001 - - 0.7600
CPruner 0.7506 4674.5 578.5 ≤ 0.000001 - - 0.8450
RNN 0.7474 4772.0 481.0 ≤ 0.000001 - - 0.8745
DROP3 0.7430 4749.0 402.0 ≤ 0.000001 - - 0.8560
ICF 0.7389 4871.0 280.0 ≤ 0.000001 - - 0.7001
SSMA 0.7074 5013.0 240.0 ≤ 0.000001 - - 0.9508
FCNN 0.6990 5016.5 236.5 ≤ 0.000001 - - 0.7555
Explore 0.6932 5047.0 206.0 ≤ 0.000001 - - 0.9647
PSRCG 0.6786 5143.0 110.0 ≤ 0.000001 - - 0.8672
CHC 0.6718 4998.0 225.0 ≤ 0.000001 - - 0.9722
MCNN 0.6271 5102.0 151.0 ≤ 0.000001 - - 0.8319
GCNN 0.6194 5130.0 21.0 ≤ 0.000001 - - 0.8468
Recons 0.6028 4677.5 473.5 ≤ 0.000001 - - -0.2804
NRMCS 0.5554 5173.0 80.0 ≤ 0.000001 - - 0.9774
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Table 11.3: Classification by SVM after IS on SMOTE-modified datasets, evaluated by the
AUC. The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are
listed. A Friedman test compares the top 10 performing SMOTE-IS methods.
Its p-value is smaller than 0.000001, such that we can conclude that significant
differences are present in the results. The p-values of the Holm post-hoc procedure
are listed comparing the lowest ranked method (SMOTE-MoCS) to the others.
Significant differences are marked in bold. The last column presents the obtained
reduction. Negative values correspond to an average increase in size of the dataset.

Wilcoxon
AUC R+ R− p Friedman rank pHolm Reduction

ENN 0.9005 2373.5 2879.5 ≥ 0.999999 5.0049 0.394172 -0.7761
MoCS 0.9002 2250.0 3003.0 ≥ 0.999999 4.4216 - -0.7533
SVM 0.9000 - - - - - -0.8246
POP 0.8990 2705.5 2445.5 0.658427 4.8284 0.394172 -0.3295
FRPS 0.8985 3283.5 1969.5 0.028108 5.0637 0.394172 -0.6703
NCNEdit 0.8982 3457.0 1694.0 0.002809 5.1422 0.394172 -0.7225
HMNEI 0.8975 3132.0 2019.0 0.059064 5.4755 0.077530 -0.0535
RNG 0.8973 3590.5 1662.5 0.001283 5.1667 0.394172 -0.7163
AllKNN 0.8953 3894.0 1359.0 0.000023 6.3627 0.000033 -0.6373
ENNTh 0.8952 3912.0 1239.0 0.000006 6.6814 0.000001 -0.5490
MENN 0.8949 4100.0 1153.0 0.000001 6.8529 ≤ 0.000001 -0.5461
MSS 0.8928 3222.0 1929.0 0.028394 - - 0.3604
CoCoIS 0.8830 4038.5 1112.5 0.000001 - - 0.8413
RMHC 0.8805 3996.0 1257.0 0.000005 - - 0.8187
IGA 0.8762 4175.5 975.5 ≤ 0.000001 - - 0.7840
CNN 0.8661 4162.5 988.5 ≤ 0.000001 - - 0.7092
RNN 0.8651 4466.0 787.0 ≤ 0.000001 - - 0.8745
SGA 0.8637 4852.0 401.0 ≤ 0.000001 - - 0.9218
GGA 0.8616 4733.5 519.5 ≤ 0.000001 - - 0.9005
ENRBF 0.8560 4176.0 975.0 ≤ 0.000001 - - -0.4315
Explore 0.8533 4725.0 426.0 ≤ 0.000001 - - 0.9647
FCNN 0.8521 4619.5 531.5 ≤ 0.000001 - - 0.7555
PSC 0.8516 4538.5 612.5 ≤ 0.000001 - - 0.7600
SSMA 0.8503 4905.5 347.5 ≤ 0.000001 - - 0.9508
CPruner 0.8482 4836.5 314.5 ≤ 0.000001 - - 0.8450
DROP3 0.8473 4705.5 445.5 ≤ 0.000001 - - 0.8560
NRMCS 0.8443 4759.0 392.0 ≤ 0.000001 - - 0.9774
CHC 0.8430 4790.0 463.0 ≤ 0.000001 - - 0.9722
ICF 0.8281 5071.0 182.0 ≤ 0.000001 - - 0.7001
IB3 0.8281 4815.5 335.5 ≤ 0.000001 - - 0.6402
MCNN 0.8106 4973.0 280.0 ≤ 0.000001 - - 0.8319
Recons 0.7875 4787.0 466.0 ≤ 0.000001 - - -0.2804
PSRCG 0.7836 5049.0 102.0 ≤ 0.000001 - - 0.8672
GCNN 0.7383 5186.0 67.0 ≤ 0.000001 - - 0.8468
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Table 11.4: Classification by 1NN after IS on SMOTE-modified datasets, evaluated by g.
The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are listed.
When the p-value allows to conclude that a SMOTE-IS method is significantly
better than SMOTE, it is marked in bold. A Friedman test compares the top
10 performing SMOTE-IS methods. Its p-value is 0.209151, such that we can
not conclude that the differences in results are statistically significant. The last
column presents the obtained reduction. Negative values correspond to an average
increase in size of the dataset.

Wilcoxon
g R+ R− p Friedman rank Reduction

CHC 0.8329 3819.5 1433.5 0.000068 5.2843 0.9722
Explore 0.8251 3720.0 1431.0 0.000105 5.3284 0.9647
CoCoIS 0.8246 3829.5 1321.5 0.000021 5.6520 0.8413
GGA 0.8222 4027.5 1225.5 0.000003 5.3725 0.9005
MENN 0.8215 4119.5 1133.5 0.000001 5.6814 -0.5461
HMNEI 0.8212 4400.5 852.5 ≤ 0.000001 4.7794 -0.0535
ENNTh 0.8208 4070.0 1081.0 ≤ 0.000001 5.6078 -0.5490
AllKNN 0.8190 4058.0 1195.0 0.000002 5.6912 -0.6373
RMHC 0.8182 3808.5 1444.5 0.000079 5.4951 0.8187
SGA 0.8176 3860.5 1392.5 0.000038 6.1078 0.9218
SSMA 0.8160 3659.5 1491.5 0.000239 - 0.9508
RNG 0.8153 4152.0 999.0 ≤ 0.000001 - -0.7163
ENN 0.8110 4014.0 1137.0 0.000001 - -0.7761
NCNEdit 0.8092 3859.5 1393.5 0.000038 - -0.7225
NRMCS 0.8042 2490.5 2762.5 ≥ 0.999999 - 0.9774
FRPS 0.7983 3567.5 1583.5 0.000773 - -0.6703
IGA 0.7934 2654.5 2496.5 0.787686 - 0.7840
MoCS 0.7917 3093.0 2160.0 0.119013 - -0.7533
RNN 0.7916 2571.0 2682.0 ≥ 0.999999 - 0.8745
1NN 0.7889 - - - - -0.8246
MSS 0.7882 2763.0 2388.0 0.524030 - 0.3604
DROP3 0.7879 3026.5 2226.5 0.181060 - 0.8560
POP 0.7875 3603.5 1547.5 0.000494 - -0.3295
CPruner 0.7823 3026.5 2226.5 0.181060 - 0.8450
CNN 0.7803 3542.5 1710.5 0.002217 - 0.7092
ICF 0.7790 3336.5 1916.5 0.017703 - 0.7001
PSC 0.7761 3378.5 1772.5 0.006489 - 0.7600
ENRBF 0.7757 3023.5 2229.5 0.184533 - -0.4315
FCNN 0.7716 3597.5 1655.5 0.001183 - 0.7555
IB3 0.7669 3860.0 1291.0 0.000013 - 0.6402
PSRCG 0.7273 4193.0 1060.0 ≤ 0.000001 - 0.8672
MCNN 0.6531 4837.5 415.5 ≤ 0.000001 - 0.8319
GCNN 0.6140 5164.0 89.0 ≤ 0.000001 - 0.8468
Recons 0.5297 4742.5 408.5 ≤ 0.000001 - -0.2804
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Table 11.5: Classification by C4.5 after IS on SMOTE-modified datasets, evaluated by g.
The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are listed.
When the p-value allows to conclude that a SMOTE-IS method is significantly
better than SMOTE, it is marked in bold. A Friedman test compares the top 10
performing SMOTE-IS methods. Its p-value is smaller than 0.000001, such that
we can conclude that significant differences are present in the results. The p-values
of the Holm post-hoc procedure are listed comparing the lowest ranked method
(SMOTE-AllKNN) to the others. Significant differences are marked in bold. The
last column presents the obtained reduction. Negative values correspond to an
average increase in size of the dataset.

Wilcoxon
g R+ R− p Friedman rank pHolm Reduction

AllKNN 0.8167 3317.5 1833.5 0.011892 4.8431 - -0.6373
MENN 0.8102 3247.0 1904.0 0.022817 5.0490 ≥ 0.999999 -0.5461
ENNTh 0.8094 3186.0 1965.0 0.038467 5.0392 ≥ 0.999999 -0.5490
RNG 0.8058 3121.0 2030.0 0.064364 5.0392 ≥ 0.999999 -0.7163
NCNEdit 0.8058 2950.5 2200.5 0.203353 5.1471 ≥ 0.999999 -0.7225
HMNEI 0.8013 2904.0 2349.0 0.353400 5.6814 0.28813 -0.0535
ENN 0.7952 2911.5 2341.5 0.340564 5.3088 ≥ 0.999999 -0.7761
MoCS 0.7869 2394.5 2858.5 ≥ 0.999999 5.7108 0.284916 -0.7533
POP 0.7868 2130.5 3020.5 ≥ 0.999999 5.7745 0.224242 -0.3295
C4.5 0.7860 - - - - - -0.8246
CoCoIS 0.7833 3147.0 2004.0 0.052656 7.4069 ≤ 0.000001 0.8413
FRPS 0.7750 3225.0 2028.0 0.045456 - - -0.6703
ENRBF 0.7681 3255.5 1997.5 0.035607 - - -0.4315
RMHC 0.7602 3571.0 1580.0 0.000741 - - 0.8187
MSS 0.7509 3796.5 1354.5 0.000035 - - 0.3604
IGA 0.7481 3906.0 1347.0 0.000019 - - 0.7840
IB3 0.7293 4086.0 1065.0 ≤ 0.000001 - - 0.6402
GGA 0.7173 4118.5 1134.5 0.000001 - - 0.9005
SGA 0.7120 4051.5 1201.5 0.000002 - - 0.9218
ICF 0.7029 4314.0 837.0 ≤ 0.000001 - - 0.7001
DROP3 0.6760 4457.5 795.5 ≤ 0.000001 - - 0.8560
CPruner 0.6746 4457.5 795.5 ≤ 0.000001 - - 0.8450
PSC 0.6495 4503.5 647.5 ≤ 0.000001 - - 0.7600
RNN 0.6448 4739.0 514.0 ≤ 0.000001 - - 0.8745
CNN 0.6295 4791.0 360.0 ≤ 0.000001 - - 0.7092
SSMA 0.5917 4896.0 357.0 ≤ 0.000001 - - 0.9508
Explore 0.5724 5005.0 248.0 ≤ 0.000001 - - 0.9647
PSRCG 0.5454 5000.0 253.0 ≤ 0.000001 - - 0.8672
CHC 0.5389 4802.0 451.0 ≤ 0.000001 - - 0.9722
FCNN 0.4827 5011.0 140.0 ≤ 0.000001 - - 0.7555
MCNN 0.3347 5189.0 64.0 ≤ 0.000001 - - 0.8319
GCNN 0.2980 5141.0 10.0 ≤ 0.000001 - - 0.8468
Recons 0.2425 4646.0 505.0 - - -0.2804
NRMCS 0.2422 5099.0 154.0 ≤ 0.000001 - - 0.9774
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Table 11.6: Classification by SVM after IS on SMOTE-modified datasets, evaluated by g.
The results of the Wilcoxon test comparing SMOTE-IS and SMOTE are listed.
When the p-value allows to conclude that a SMOTE-IS method is significantly
better than SMOTE, it is marked in bold. A Friedman test compares the top
10 performing SMOTE-IS methods. Its p-value is smaller than 0.000001, such
that we can conclude that significant differences are present in the results. The
p-values of the Holm post-hoc procedure are listed comparing the lowest ranked
method (SMOTE-MoCS) to the others. Significant differences are marked in bold.
The last column presents the obtained reduction. Negative values correspond to
an average increase in size of the dataset.

Wilcoxon
g R+ R− p Friedman rank pHolm Reduction

MoCS 0.8446 4456.0 797.0 ≤ 0.000001 3.6569 - -0.7533
NCNEdit 0.8445 3467.0 1786.0 0.004994 4.7402 0.021219 -0.7225
RNG 0.8440 3231.0 2022.0 0.043425 4.8971 0.013765 -0.7163
FRPS 0.8430 3515.0 1738.0 0.002989 4.5245 0.040702 -0.6703
HMNEI 0.8415 3121.0 2132.0 0.098453 5.2157 0.001181 -0.0535
ENN 0.8412 2897.0 2254.0 0.275149 5.6814 0.000013 -0.7761
ENNTh 0.8389 2539.0 2714.0 ≥ 0.999999 5.4657 0.000119 -0.5490
POP 0.8388 3605.0 1648.0 0.001083 4.8235 0.017777 -0.3295
SVM 0.8386 - - - - - -0.8246
AllKNN 0.8328 4020.0 1233.0 0.000003 8.0637 ≤ 0.000001 -0.6373
MENN 0.8326 3788.5 1362.5 0.000039 7.9314 ≤ 0.000001 -0.5461
CoCoIS 0.8125 3839.0 1414.0 0.000051 - - 0.8413
MSS 0.8048 3648.0 1605.0 0.000646 - - 0.3604
IGA 0.7947 4087.0 1166.0 0.000001 - - 0.7840
RMHC 0.7866 4122.0 1131.0 0.000001 - - 0.8187
ENRBF 0.7796 4407.0 846.0 ≤ 0.000001 - - -0.4315
NRMCS 0.7753 4824.0 429.0 ≤ 0.000001 - - 0.9774
GGA 0.7741 4362.0 891.0 ≤ 0.000001 - - 0.9005
SGA 0.7666 4541.0 712.0 ≤ 0.000001 - - 0.9218
CHC 0.7618 4667.0 586.0 ≤ 0.000001 - - 0.9722
Explore 0.7516 4872.0 384.0 ≤ 0.000001 - - 0.9647
SSMA 0.7486 4772.0 481.0 ≤ 0.000001 - - 0.9508
PSC 0.7420 4673.0 580.0 ≤ 0.000001 - - 0.7600
IB3 0.7342 4700.0 553.0 ≤ 0.000001 - - 0.6402
CPruner 0.7335 4905.0 348.0 ≤ 0.000001 - - 0.8450
RNN 0.7298 4668.5 584.5 ≤ 0.000001 - - 0.8745
DROP3 0.7244 4905.0 348.0 ≤ 0.000001 - - 0.8560
ICF 0.7184 4962.0 291.0 ≤ 0.000001 - - 0.7001
CNN 0.7120 4626.5 524.5 ≤ 0.000001 - - 0.7092
FCNN 0.6675 4970.0 283.0 ≤ 0.000001 - - 0.7555
PSRCG 0.6463 5156.0 97.0 ≤ 0.000001 - - 0.8672
MCNN 0.6041 5018.0 235.0 ≤ 0.000001 - - 0.8319
Recons 0.5221 4487.0 766.0 ≤ 0.000001 - - -0.2804
GCNN 0.4919 5137.5 13.5 ≤ 0.000001 - - 0.8468
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12 State-of-the-art resampling methods

In this final chapter before the concluding global comparison, we consider the resampling
methods that were discussed in Chapter 2. They aim to enhance the classification process of
imbalanced data by modifying the dataset in order to obtain a more favorable balance between
classes. Their description in Section 2.1 also included the parameter values used in our study,
which mostly coincide with the optimal values put forward in the original proposals.

Similar to our work in the previous chapters, we extract five of the best performing methods
for the final comparison in Chapter 13. This allows for the comparison of these state-of-the-art
methods to the IS and ISImb methods in a variety of settings.

Two alternative approaches to dealing with class imbalance, cost-sensitive learning and the
ensemble method EUSBoost, were presented in Chapter 2. They do not modify the dataset,
but focus directly on the classification itself. The comparison with these methods will be
made in Chapter 13.

12.1 Discussion

In this section, we provide an analysis of the results presented in Tables 12.1-12.6. Our
discussion is divided among the three classifiers.

1NN

The AUC results for the classification by 1NN are presented in Table 12.1. The two EUS
methods from Section 2.1.1 are both found in the top 3. These are undersampling meth-
ods leading to considerable average reductions of 82.61% and 95.58% for EBUS-MS-GM and
EUSCM-GS-GM respectively. We have noted before, in Section 9.1.5 discussing the clas-
sification results of ISImb, that preprocessing methods resulting in a large reduction of the
training set often obtain very good results for the classification by 1NN. Two hybrid algo-
rithms, SMOTE-TL and SMOTE-ENN, also yield high results, but these methods lead to an
increase rather than decrease in the number of training instances.

The execution of the Friedman test on the ten best performing methods shows that significant
differences are observed among them. The lowest rank is assigned to EBUS-MS-GM, but the
further analysis by means of the Holm post-hoc procedure shows that it does not significantly
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outperform EUSCM-GS-GM, nor SMOTE-TL and SMOTE-ENN. However, it does yield
significantly better results than the other methods in this group, including SMOTE.

Apart from the EUS methods, a third undersampling method that is found in the top 5 is
RUS. It is remarkable that the simplistic strategy of this method, namely the random removal
of majority instances from the training set, is able to yield good results in the classification.
Nevertheless, the Holm post-hoc procedure shows that EBUS-MS-GM significantly outper-
forms RUS. This leads us to conclude that more involved removal criteria can still improve
the random undersampling.

Table 12.4 lists the corresponding results for the g value. We observe that EBUS-MS-GM
again takes on the top position. The overall ranking among the methods is mostly the same,
but it is worth noting that EBUS-MS-GM, which receives the lowest Friedman ranking, signif-
icantly outperforms EUSCM-GS-GM, while based on AUC they were found to be statistically
equivalent.

Overall, we observe that 1NN can certainly benefit from undersampling the dataset, where
the reduction in size results in a boost in classification performance. This is supported by the
results of both evaluation measures.

C4.5

Based on the AUC results presented in Table 12.2, we conclude that oversampling and hybrid
approaches yield better results for C4.5 compared to the undersampling methods. SMOTE-
ENN and SMOTE-TL, which were also found at the top for 1NN, attain the highest AUC
values. The pure oversampling techniques SMOTE and Safe-level-SMOTE obtain good results
as well.

The best performing undersampling methods remain EBUS-MS-GM and RUS. The other
EUS method EUSCM-GS-GM, which performed well for 1NN, is found at the bottom. This
method led to an average reduction of 95.58%, which may render it impossible for C4.5 to
construct a decent classification model.

From the Friedman test performed on the top 10 methods we conclude that significant differ-
ences can be found among them. The lowest rank is assigned to SMOTE-TL, but it does not
significantly outperform the other hybrid approaches SMOTE-ENN and SMOTE-RSB∗, nor
the oversampling techniques SMOTE, Safe-level-SMOTE and MWMOTE. It does not yield
significantly better results than EBUS-MS-GM either. RUS on the other hand is proven to
perform significantly worse than SMOTE-TL.

In Table 12.5, the results for g are displayed. EBUS-MS-GM is once more found at the top.
The difference in g with the second best algorithm SMOTE-TL is relatively large, but the
Friedman test still assigns the lowest rank to the latter method. SMOTE-TL yields equiv-
alent results to EBUS-MS-GM, SMOTE-ENN, SMOTE and SMOTE-RSB∗. The remaining
methods in the top 10 are significantly outperformed.

We conclude that oversampling and hybrid methods generally yield better results in the clas-
sification by C4.5. The best undersampling method is EBUS-MS-GM, but it is significantly
outperformed by SMOTE-TL, when the classifier is evaluated by its AUC.
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SVM

Table 12.3 presents the AUC values obtained after classification by SVM. A notable difference
with the analogous results of 1NN and C4.5 is observed: most undersampling methods are
found in the lower half of the table. The only undersampling method appearing in the top 10
is TL. This method only achieves a moderate reduction of 3.6%, while other undersampling
methods obtain reductions averaging well above 80%. We refer to Section 10.1, where it was
also concluded that the classification by SVM seems to benefit more from oversampling than
undersampling the dataset.

The highest AUC is obtained by ROS, which oversamples the dataset by adding duplicates
of randomly selected minority instances. Like the related RUS algorithm, which performs
well for both 1NN and C4.5, this straightforward strategy proves to be sufficient to enhance
the performance of this classifier. ROS receives the lowest rank in the Friedman test, but no
significant differences between the top 10 methods are concluded.

In Table 12.6, the results of the evaluation by g can be found. The top three spots are taken
up by hybrid methods: SMOTE-TL, SMOTE-ENN and SMOTE-RSB∗. The oversampling
techniques SMOTE and ROS complete the top 5. EBUS-MS-GM and RUS are the best
performing undersampling methods and are found among the top 10. Nevertheless, they are
significantly outperformed by SMOTE-RSB∗, which receives the lowest rank in the Friedman
test. SMOTE-RSB proves to be equivalent to SMOTE-TL and ROS. The other methods in
the top 10 are outperformed.

To summarize, the results for SVM exhibit the pattern that increasing rather than reducing
the size of the dataset may benefit the classifier more. A similar conclusion was drawn for
the classification by C4.5, but this characteristic is even more prominently present for SVM.

Genetic MS methods

The good performance of EBUS-MS-GM inspired us to test whether restricting our genetic
ISImb methods to the removal of instances of the majority class may also enhance their
performance and possibly result in them significantly outperforming the state-of-the-art. This
implies that positive elements are automatically selected in S, which is an important difference
with ISImb. We opted to only test this setup for the six genetic algorithms, as they generally
yield the best results among the ISImb methods.

Our experiments showed that there is no real improvement in restricting these algorithms to
an MS setup. We evaluated GGAImb-MS, SGAImb-MS, IGAImb-MS, CHCImb-MS, SSMAImb-
MS and CoCoISImb-MS with 1NN, C4.5 and SVM by both AUC and g. Significant differences
were rarely found and it could also not be proven that the MS methods always yield better
results than our original ISImb versions. We decided to not further pursue this idea, as it does
take a step away from IS and therefore does not coincide with the main focus of this work.

Selection of best performing resampling methods

From this discussion, we feel that we can conclude that EBUS-MS-GM, RUS, SMOTE,
SMOTE-TL and SMOTE-RSB∗ form appropriate candidates for the global comparison. The
first two are undersampling methods, SMOTE is an oversampling technique and the remaining
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two are hybrid algorithms. The SMOTE-ENN method also ranks among the top performing
methods, but has already been selected in the previous chapter.

Table 12.1: Classification by 1NN following the application of the resampling methods, eval-
uated by the AUC. The p-value of the Friedman test is smaller than 0.000001,
such that we conclude significant differences to be present. The lowest ranked
method is EBUS-MS-GM and is marked in bold. The p-values of the Holm post-
hoc procedure are listed, comparing EBUS-MS-GM to the other methods in the
top 10. Significant differences are marked in bold. The final column presents the
obtained reduction. Negative values correspond to an average increase in size of
the dataset.

AUC Friedman rank pHolm Reduction
EBUS-MS-GM 0.8534 4.3039 - 0.8261
SMOTE-TL 0.8430 4.5686 ≥ 0.999999 -0.7858
EUSCM-GS-GM 0.8414 5.1275 0.156234 0.9558
SMOTE-ENN 0.8400 4.4363 ≥ 0.999999 -0.7761
RUS 0.8334 5.8755 0.000940 0.8246
SMOTE 0.8284 6.0294 0.000282 -0.8246
SBC 0.8266 6.2598 0.000032 0.8239
SMOTE-RSB 0.8237 6.2059 0.000051 -0.8246
NCL 0.8231 5.8873 0.000940 0.1041
Borderline 0.8174 6.3039 0.000021 -0.8246
Borderline2 0.8141 - - -0.8246
CNN-TL/OSS 0.8141 - - 0.8619
MWMOTE 0.8126 - - -0.1754
TL 0.8112 - - 0.0360
Spider relabel 0.8028 - - -0.0603
Spider weak 0.8027 - - -0.0494
Spider strong 0.8027 - - -0.1034
US-CNN 0.8026 - - 0.8289
Spider2 0.8019 - - -0.1029
ROS 0.7941 - - -0.8246
Safelevel 0.7941 - - -0.8246
CPM 0.7856 - - 0.8794
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Table 12.2: Classification by C45 following the application of the resampling methods, eval-
uated by the AUC. The p-value of the Friedman test is smaller than 0.000001,
such that we conclude significant differences to be present. The lowest ranked
method is SMOTE-TL and is marked in bold. The p-values of the Holm post-
hoc procedure are listed, comparing SMOTE-TL to the other methods in the top
10. Significant differences are marked in bold. The final column presents the
obtained reduction. Negative values correspond to an average increase in size of
the dataset.

AUC Friedman rank pHolm Reduction
SMOTE-ENN 0.8412 4.7402 ≥ 0.999999 -0.7761
SMOTE-TL 0.8396 4.5931 - -0.7858
EBUS-MS-GM 0.8337 5.5343 0.132098 0.8261
SMOTE 0.8315 4.6961 ≥ 0.999999 -0.8246
Safelevel 0.8306 4.9706 ≥ 0.999999 -0.8246
SMOTE-RSB 0.8266 5.2647 0.452726 -0.8246
RUS 0.8207 6.5147 0.000047 0.8246
MWMOTE 0.8168 5.6569 0.072634 -0.1754
SBC 0.8140 6.5735 0.000027 0.8239
Borderline2 0.8089 6.2059 0.000996 -0.8246
NCL 0.8070 - - 0.1041
Borderline 0.8058 - - -0.8246
Spider2 0.8039 - - -0.1029
Spider strong 0.8038 - - -0.1034
ROS 0.8028 - - -0.8246
CNN-TL/OSS 0.8007 - - 0.8619
Spider relabel 0.8005 - - -0.0603
TL 0.7989 - - 0.0360
Spider weak 0.7980 - - -0.0494
US-CNN 0.7893 - - 0.8289
EUSCM-GS-GM 0.7438 - - 0.9558
CPM 0.7092 - - 0.8794
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Table 12.3: Classification by SVM following the application of the resampling methods, eval-
uated by the AUC. The p-value of the Friedman test is 0.15569, meaning that
no significant differences between the top 10 methods were observed. The low-
est ranked method is ROS. The final column presents the obtained reduction.
Negative values correspond to an average increase in size of the dataset.

AUC Friedman rank Reduction
ROS 0.9024 5.0784 -0.8246
SMOTE-ENN 0.9005 5.7353 -0.7761
SMOTE-RSB 0.9001 5.2206 -0.8246
SMOTE 0.9000 5.3725 -0.8246
SMOTE-TL 0.8987 6.0392 -0.7858
Spider strong 0.8945 5.5490 -0.1034
Spider weak 0.8939 5.2255 -0.0494
Borderline 0.8938 5.3088 -0.8246
TL 0.8929 5.3235 0.0360
Borderline2 0.8928 6.1471 -0.8246
MWMOTE 0.8905 - -0.1754
Spider relabel 0.8896 - -0.0603
Spider2 0.8889 - -0.1029
NCL 0.8871 - 0.1041
EBUS-MS-GM 0.8812 - 0.8261
US-CNN 0.8792 - 0.8289
RUS 0.8784 - 0.8246
Safelevel 0.8777 - -0.8246
EUSCM-GS-GM 0.8730 - 0.9558
SBC 0.8685 - 0.8239
CNN-TL/OSS 0.8681 - 0.8619
CPM 0.8632 - 0.8794
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Table 12.4: Classification by 1NN following the application of the resampling methods, eval-
uated by g. The p-value of the Friedman test is smaller than 0.000001, such
that we conclude significant differences to be present. The lowest ranked method
is EBUS-MS-GM and is marked in bold. The p-values of the Holm post-hoc
procedure are listed, comparing EBUS-MS-GM to the other methods in the top
10. Significant differences are marked in bold. The final column presents the
obtained reduction. Negative values correspond to an average increase in size of
the dataset.

g Friedman rank pHolm Reduction
EBUS-MS-GM 0.8432 4.0196 - 0.8261
RUS 0.8248 5.4363 0.003333 0.8246
SMOTE-TL 0.8192 4.6225 0.309948 -0.7858
EUSCM-GS-GM 0.8142 5.2892 0.008242 0.9558
SBC 0.8124 6.1716 0.000003 0.8239
SMOTE-ENN 0.8110 4.4951 0.309948 -0.7761
CNN-TL/OSS 0.7986 6.4216 ≤ 0.000001 0.8619
SMOTE 0.7889 6.1569 0.000003 -0.8246
SMOTE-RSB 0.7807 6.2647 0.000001 -0.8246
NCL 0.7688 6.1225 0.000004 0.1041
US-CNN 0.7665 - - 0.8289
Borderline 0.7551 - - -0.8246
MWMOTE 0.7459 - - -0.1754
Borderline2 0.7456 - - -0.8246
TL 0.7373 - - 0.0360
CPM 0.7207 - - 0.8794
Spider2 0.7195 - - -0.1029
Spider relabel 0.7195 - - -0.0603
Spider weak 0.7170 - - -0.0494
Spider strong 0.7170 - - -0.1034
Safelevel 0.7054 - - -0.8246
ROS 0.7053 - - -0.8246

187



Chapter 12. State-of-the-art resampling methods

Table 12.5: Classification by C45 following the application of the resampling methods, eval-
uated by g. The p-value of the Friedman test is smaller than 0.000001, such that
we conclude significant differences to be present. The lowest ranked method is
SMOTE-TL and is marked in bold. The p-values of the Holm post-hoc procedure
are listed, comparing SMOTE-TL to the other methods in the top 10. Significant
differences are marked in bold. The final column presents the obtained reduction.
Negative values correspond to an average increase in size of the dataset.

g Friedman rank pHolm Reduction
EBUS-MS-GM 0.8123 4.8480 0.458345 0.8261
SMOTE-TL 0.8010 4.3578 - -0.7858
RUS 0.8005 5.7157 0.006805 0.8246
SMOTE-ENN 0.7952 4.8676 0.458345 -0.7761
SBC 0.7870 6.1029 0.000270 0.8239
SMOTE 0.7860 4.9804 0.425693 -0.8246
SMOTE-RSB 0.7780 5.1667 0.225668 -0.8246
Safelevel 0.7767 5.7451 0.006404 -0.8246
CNN-TL/OSS 0.7499 6.9608 ≤ 0.000001 0.8619
MWMOTE 0.7310 6.2549 0.000061 -0.1754
ROS 0.7245 - - -0.8246
Borderline 0.7229 - - -0.8246
Borderline2 0.7223 - - -0.8246
Spider strong 0.7218 - - -0.1034
Spider weak 0.7216 - - -0.0494
Spider2 0.7210 - - -0.1029
Spider relabel 0.7167 - - -0.0603
NCL 0.7036 - - 0.1041
US-CNN 0.6894 - - 0.8289
EUSCM-GS-GM 0.6837 - - 0.9558
TL 0.6703 - - 0.0360
CPM 0.5197 - - 0.8794
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Table 12.6: Classification by SVM following the application of the resampling methods, eval-
uated by g. The p-value of the Friedman test is smaller than 0.000001, such
that we conclude significant differences to be present. The lowest ranked method
is SMOTE-RSB∗ and is marked in bold. The p-values of the Holm post-hoc
procedure are listed, comparing SMOTE-RSB∗ to the other methods in the top
10. Significant differences are marked in bold. The final column presents the
obtained reduction. Negative values correspond to an average increase in size of
the dataset.

g Friedman rank pHolm Reduction
SMOTE-TL 0.8471 4.3431 0.602848 -0.7858
SMOTE-ENN 0.8412 5.5049 0.003335 -0.7761
SMOTE-RSB 0.8399 4.1225 - -0.8246
SMOTE 0.8386 5.7500 0.000618 -0.8246
ROS 0.8333 4.6569 0.415119 -0.8246
EBUS-MS-GM 0.8181 5.8578 0.000255 0.8261
RUS 0.8122 6.7010 ≤ 0.000001 0.8246
Safelevel 0.8118 6.2843 0.000003 -0.8246
Borderline 0.8102 5.6765 0.000988 -0.8246
Borderline2 0.8037 6.1029 0.000021 -0.8246
SBC 0.7948 - - 0.8239
EUSCM-GS-GM 0.7794 - - 0.9558
CNN-TL/OSS 0.7662 - - 0.8619
US-CNN 0.7363 - - 0.8289
Spider strong 0.7308 - - -0.1034
MWMOTE 0.7200 - - -0.1754
Spider2 0.7169 - - -0.1029
Spider relabel 0.7141 - - -0.0603
Spider weak 0.7065 - - -0.0494
NCL 0.6982 - - 0.1041
TL 0.6781 - - 0.0360
CPM 0.6649 - - 0.8794
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13 Global comparison

To conclude the experimental evaluation, we perform a global comparison of the best per-
forming methods and settings encountered so far. Five methods were selected in each of the
Chapters 9-12, leading to twenty methods which are compared among each other. We still
consider the three classifiers, 1NN, C4.5 and SVM, and both evaluation measures, AUC and
g.

All methods considered in the previous chapters were data level approaches to dealing with
class imbalance. In Chapter 2, we also recalled two alternative techniques, cost-sensitive
learning and EUSBoost, which do not modify the training set, but focus on the classification
itself. In Section 13.2, we present the results of these methods and verify whether they are
competitive with the combinations of preprocessing and traditional classification discussed
before.

13.1 Discussion

In Table 13.1 we list the execution times of the 20 selected methods. As genetic approaches
are computationally more expensive, the selected ISImb methods as well as EBUS-MS-GM
are listed at the bottom. SMOTE-RNG is also found among them, which is due to the RNG
step. The use of the neighborhood graph makes this IS method run more slowly.

Tables 13.2-13.7 display the AUC and g results for the selected methods, as well as their
average reduction after preprocessing. We discuss these results separately for each classifier.

1NN

Table 13.2 presents the results of evaluating the classification of 1NN by the AUC. The ISImb
methods and the state-of-the-art undersampling method EBUS-MS-GM are found at the
top of the table. The undersampling method RUS is found further down, which provides
further evidence to the fact that its random approach, although yielding good results, may
not be sufficient to guarantee the method a spot at the top. These methods all lead to a
considerable average reduction of the dataset. We have observed throughout this work that
the 1NN classifier clearly benefits from such a reduction in the presence of class imbalance.

The best performing method that leads to an increase in the number of instances is SMOTE-
HMNEI. However, this increase is very moderate at 5.35%. The other SMOTE-IS methods
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selected in Chapter 11 complete the top 10. The Friedman test assigns the lowest rank to
SSMAImb, which was developed in this work in Chapter 5. The p-value is not low enough to
conclude significant differences at the 5% significance level.

In Table 13.5, containing the corresponding g values, the ISImb and undersampling methods
are again found at the top. The best six methods all lead to a decrease in the number of
instances of at least 80%, while the lower half of the table almost exclusively consists of
methods increasing the size of the training set.

The Friedman test again assigns the lowest rank to our method SSMAImb. The Holm post-hoc
procedure allows us to conclude that SSMAImb significantly outperforms GGAImb and the
state-of-the-art undersampling method RUS. It is found to be equivalent to the other genetic
algorithms CHCImb and SGAImb, the state-of-the-art methods EBUS-MS-GM and SMOTE-
TL and the SMOTE-IS methods SMOTE-HMNEI, SMOTE-ENNTh and SMOTE-RNG.

kNN

We have run experiments for larger values of k in kNN for the five best performing methods
in the classification by 1NN, which are CHCImb, EBUS-MS-GM, SSMAImb, SGAImb and
SMOTE-HMNEI. 1NN is currently the only classifier for which ISImb places clearly at the
top and we want to verify whether this remains so when increasing the parameter k.
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Figure 13.1: AUC values for kNN.
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Figure 13.2: g values for kNN.

Figures 13.1 and 13.2 visually present the behavior of these five methods in the classification
by kNN, for increasing values of k. The three genetic ISImb methods and EBUS-MS-GM show
the same global behavior for both the AUC and g. No large differences are observed between
all five methods for the smallest k values.

However, for increasing values for k starting from k = 7, a clear dominance of SMOTE-
HMNEI over the other methods is observed. The undersampling and ISImb methods show a
downward trend, while the SMOTE-IS method, a hybrid approach, remains roughly at the
same level. An explanation can be found in the average obtained reduction. SMOTE-HMNEI
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leads to a slight increase of the dataset, while the other four methods reduce it considerably.
Using large values for k in kNN can only yield good results when enough elements are present
to obtain suitable neighborhoods for the instances. For small datasets, in which the large
reduction of the undersampling and ISImb methods can result, this may not be possible. As
a toy example, when executing 25NN with a prototype set containing 20 instances, all newly
presented elements have the same set of neighbors, namely the entire prototype set, and
are assigned to the same class. The AUC is equal to 0.5, as all elements will have an equal
probability p+ of being classified as positive, which coincides with random guessing. As either
the TPR or TNR are zero, g will be zero as well. Methods leading to a large average reduction,
like the ones considered here, are therefore more useful when the posterior classification is
executed with lower values of k in kNN.

In summary, we observe that when k is small, no noticeable differences between the methods
are present. For larger values of k on the other hand, the hybrid approach SMOTE-HMNEI
clearly outperforms the remaining methods. This conclusion is supported by both figures,
representing the two evaluation measures.

C4.5

Table 13.3, presenting the AUC values of C4.5, shows that different conclusions can be drawn
for this classifier. In particular, the undersampling and ISImb methods are found at the
bottom of the table. The best performing methods result in an considerable average increase
in size of the training set. The odd duck in the top 10 is EBUS-MS-GM with its reduction of
82.61%.

It is interesting to observe that all methods in the top 5 consist of two steps: the application of
SMOTE followed by data-cleaning, either performed by the use of Tomek links in SMOTE-TL
or an editing IS method in the SMOTE-IS methods. The ISImb-SMOTE methods complete
the top 10. The Friedman test assigns the lowest rank to SMOTE-TL, but no significant
differences with the other nine methods can be concluded.

Based on the g values in Table 13.6, some ISImb and undersampling methods are again able
to attain high results. In particular, EBUS-MS-GM is listed as the top performing method
and CHCImb, SSMAImb and RUS are also found in the top 10. The lowest Friedman rank is
assigned to SMOTE-ENNTh and the associated p-value leads us to conclude that significant
differences are present. SMOTE-ENNTh significantly outperforms both RUS and SSMAImb.
For the remaining seven methods in the top 10, it can not be proven that their results are
significantly worse than those of SMOTE-ENNTh.

SVM

For the AUC obtained in the classification by SVM, Table 13.4 shows that the ISImb and
undersampling methods lead to the lowest results. The best performing method is SMOTE-
ENN. All ISImb-SMOTE methods are also found in the top 10, but the differences in AUC are
truly minor. This is supported by the results of the Friedman test, which assigns the lowest
rank to SMOTE-RSB∗, but is not able to conclude that significant differences are present
between the top 10 methods.

193



Chapter 13. Global comparison

From the g values in Table 13.7, we also conclude that the methods leading to a decrease
in size of the training set do not perform as well in the classification by SVM compared to
those resulting in an increase. The Friedman test assigns the lowest rank to SMOTE-MoCS
and concludes that significant differences are present. SMOTE-MoCS yields significantly
better results than MoCSImb-SMOTE, SMOTE-RNG, RNGImb-SMOTE, RNGImb-SMOTE,
SMOTE-HMNEI and SMOTE-ENN and is equivalent to SMOTE-TL, ENNThImb-SMOTE,
NCNEditImb-SMOTE and SMOTE-RSB.

Conclusion

Overall, the most notable difference in the results is found between 1NN on the one hand
and C4.5 and SVM on the other. Undersampling the dataset by ISImb or state-of-the-art
undersampling techniques, where the latter are restricted to undersampling the majority
class, leads to a significant boost in classification performance for 1NN and has proven to
yield better results than oversampling the minority class.

When C4.5 or SVM are used in the classification process, it was shown that oversampling
and hybrid approaches are more advantageous than undersampling. This behavior is most
prominently observed for SVM, which places the state-of-the-art undersampling and the ISImb
methods add the bottom for both evaluation measures. For C4.5, a more nuanced conclusion
was drawn, as some undersampling and ISImb methods were still able to rank among the best
algorithms when the classifier was evaluated by its g values.

We conclude that, compared to the state-of-the-art, our ISImb methods are most suitable to
be used in the classification by kNN.

13.2 Classification of imbalanced data

As noted in the introduction to this chapter, we have also performed experiments for the
cost-sensitive learners (Section 2.2) and the ensemble method EUSBoost (Section 2.3). The
former family includes cost-sensitive k nearest neighbor (CS-3NN, CS-5NN, CS-7NN and CS-
9NN), cost-sensitive C4.5 decision trees (CS-C4.5) and cost-sensitive SVM (CS-SVM). The
results for both AUC and g are presented in Table 13.8.

We now proceed with a final global picture of the classification of imbalanced data.

Evaluation by AUC

When using the AUC to evaluate the classifier, Tables 13.2-13.4 show that the classification by
SVM after preprocessing yields considerably higher values than those of 1NN and C4.5. It was
shown that the baseline classification by SVM can significantly benefit from oversampling the
dataset. The hybrid approaches SMOTE-ENN, SMOTE-MoCS and SMOTE-RSB are listed
among the top performing methods, as well as the pure oversampling technique SMOTE. The
ISImb-SMOTE methods also perform well.

Oversampling methods still lead to an increased dataset, where artificial elements have been
constructed. Table 13.8 shows that the boosting approach EUSBoost also yields a high average
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AUC value and it does not need to modify the dataset in doing so. The cost-sensitive learners
do not rank among the best performing methods.

We performed a Wilcoxon test comparing EUSBoost to the classification by SVM when pre-
processing is executed by SMOTE-RSB, which is the lowest ranked method in Table 13.4. The
p-value of this test was 0.101409 (R+ = 3116.5, R− = 2136.5), from which we can not con-
clude that EUSBoost is significantly better than SMOTE-RSB+SVM at the 5% significance
level, but it does suggest that the former is close to outperforming the latter.

When one aims to obtain high AUC values, which reflect how well a classifier is able to
distinguish between classes, we conclude that EUSBoost can be preferred. This method
yields the highest observed AUC value and does not create any artificial instances. However,
its high execution time (Table 13.8) needs to be taken into account.

Evaluation by g

The g value does not measure the ability to separate the two classes, but reflects the actual
classification results. In this case, no clear dominance of SVM over the other classifiers is
observed. We can refer the reader to Section 9.1.1, in which we discussed the differences
between the AUC and g and provided an explanation as to why the behavior of SVM may
differ among them.

Tables 13.5-13.7 show that the values of 1NN and SVM are close together, while the results of
C4.5 after preprocessing are lower. Methods obtaining the best results for 1NN are the genetic
ISImb methods and the undersampling method EBUS-MS-GM. For SVM, these results are
obtained by algorithms leading to an average increase in size. Table 13.8 shows that the g
value of EUSBoost also falls in the range of the best performing methods. The cost-sensitive
approaches are again unable to rank among the top.

We performed a Friedman test on nine of the best performing settings. The results are
presented in Table 13.9. The lowest rank is assigned to EUSBoost, but since the p-value of
this test is 0.344728, we cannot conclude that significant differences are present among these
nine methods. The average execution times are listed as well, including those of the associated
classifier. As stated before, the high values for the selected ISImb methods are due to their
genetic nature. EUSBoost incorporates the genetic EUS methods, which is why its running
time is very steep as well. The running time of ISImb+1NN is considerably lower than that
of EUSBoost, even though we are also using genetic approaches.

Preprocessing with the genetic ISImb methods followed by the classification by 1NN is found
to be equivalent to several state-of-the-art approaches including EUSBoost. This shows that
the size of the dataset does not necessarily have to be increased in order to obtain good
classification results. While SVM requires oversampling to be notably improved, the 1NN
classifier benefits more from reducing the number of training instances. Our ISImb methods
achieve this goal and we conclude that ISImb certainly deserves its place among the valid
options to tackle the classification of imbalanced data.
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Table 13.1: Execution times (in s) of the 20 selected methods.

Time (s)
RUS 0.0016
SMOTE 0.0682
MoCSImb-SMT 0.4615
ENNThImb-SMT 0.4685
ENNImb-SMT 0.4752
SMOTE-MoCS 1.4343
SMOTE-ENN 1.4478
SMOTE-ENNTh 1.4789
SMOTE-TL 1.4974
SMOTE-HMNEI 7.5192
NCNEditImb-SMT 12.2794
SMOTE-RSB 12.9311
SSMAImb 39.3488
RNGImb-SMT 82.4104
CHCImb 647.8564
SMOTE-RNG 647.8819
EBUS-MS-GM 697.4154
SGAImb 1128.1690
GGAImb 1476.3960
IGAImb 2752.3440
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Table 13.2: Classification by 1NN after preprocessing, evaluated by the AUC. The p-value
of the Friedman test is 0.074173, meaning that no significant differences between
the top 10 methods were observed. The lowest ranked method is SSMAImb and
is marked in bold. The final column presents the obtained reduction. Negative
values correspond to an average increase in size of the dataset.

AUC Friedman rank Reduction
SSMAImb 0.8545 4.8284 0.8408
CHCImb 0.8537 5.3480 0.8536
EBUS-MS-GM 0.8534 5.5147 0.8261
SGAImb 0.8506 5.1765 0.8471
SMOTE-HMNEI 0.8466 5.2451 -0.0535
GGAImb 0.8440 6.2647 0.8238
SMOTE-RNG 0.8431 5.5735 -0.7163
SMOTE-TL 0.8430 5.7206 -0.7858
SMOTE-ENNTh 0.8414 5.8529 -0.5490
SMOTE-ENN 0.8400 5.4755 -0.7761
ENNThImb-SMT 0.8366 - -0.7135
RNGImb-SMT 0.8351 - -0.7699
IGAImb 0.8346 - 0.8039
ENNImb-SMT 0.8342 - -0.7959
RUS 0.8334 - 0.8246
MoCSImb-SMT 0.8330 - -0.7750
NCNEditImb-SMT 0.8327 - -0.7910
SMOTE-MoCS 0.8307 - -0.7533
SMOTE 0.8284 - -0.8246
SMOTE-RSB 0.8237 - -0.8246
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Table 13.3: Classification by C45 after preprocessing, evaluated by the AUC. The p-value of
the Friedman test is 0.121245, meaning that no significant differences between the
top 10 methods were observed. The lowest ranked method is SMOTE-TL and
is marked in bold. The final column presents the obtained reduction. Negative
values correspond to an average increase in size of the dataset.

AUC Friedman rank Reduction
SMOTE-ENN 0.8412 5.3775 -0.7761
SMOTE-RNG 0.8411 5.1667 -0.7163
SMOTE-TL 0.8396 4.9265 -0.7858
SMOTE-ENNTh 0.8369 5.6078 -0.5490
SMOTE-HMNEI 0.8358 6.0735 -0.0535
NCNEditImb-SMT 0.8357 5.2990 -0.7910
RNGImb-SMT 0.8355 5.3922 -0.7699
EBUS-MS-GM 0.8337 6.1324 0.8261
ENNImb-SMT 0.8324 5.4314 -0.7959
MoCSImb-SMT 0.8321 - -0.7750
SMOTE 0.8315 - -0.8246
IGAImb 0.8300 - 0.8039
ENNThImb-SMT 0.8298 - -0.7135
SMOTE-MoCS 0.8280 - -0.7533
CHCImb 0.8273 - 0.8536
SMOTE-RSB 0.8266 - -0.8246
GGAImb 0.8252 - 0.8238
SGAImb 0.8238 - 0.8471
SSMAImb 0.8230 - 0.8408
RUS 0.8207 - 0.8246

198



Chapter 13. Global comparison

Table 13.4: Classification by SVM after preprocessing, evaluated by the AUC. The p-value of
the Friedman test is 0.104484, meaning that no significant differences between the
top 10 methods were observed. The lowest ranked method is SMOTE-RSB∗ and
is marked in bold. The final column presents the obtained reduction. Negative
values correspond to an average increase in size of the dataset.

AUC Friedman rank Reduction
SMOTE-ENN 0.9005 5.8382 -0.7761
ENNImb-SMT 0.9003 5.4902 -0.7959
RNGImb-SMT 0.9003 5.4510 -0.7699
SMOTE-MoCS 0.9002 5.3971 -0.7533
SMOTE-RSB 0.9001 4.8971 -0.8246
SMOTE 0.9000 4.9706 -0.8246
MoCSImb-SMT 0.8998 5.5049 -0.7750
ENNThImb-SMT 0.8998 5.5980 -0.7135
NCNEditImb-SMT 0.8989 5.6422 -0.7910
SMOTE-TL 0.8987 6.2108 -0.7858
SMOTE-HMNEI 0.8975 - -0.0535
SMOTE-RNG 0.8973 - -0.7163
SMOTE-ENNTh 0.8952 - -0.5490
IGAImb 0.8853 - 0.8039
GGAImb 0.8845 - 0.8238
SGAImb 0.8834 - 0.8471
EBUS-MS-GM 0.8812 - 0.8261
SSMAImb 0.8799 - 0.8408
CHCImb 0.8786 - 0.8536
RUS 0.8784 - 0.8246
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Table 13.5: Classification by 1NN after preprocessing, evaluated by g. The p-value of the
Friedman test is 0.000185, such that we conclude significant differences to be
present. The lowest ranked method is SSMAImb and is marked in bold. The
p-values of the Holm post-hoc procedure are listed, comparing SSMAImb to the
other methods in the top 10. Significant differences are marked in bold. The
final column presents the obtained reduction. Negative values correspond to an
average increase in size of the dataset.

g Friedman rank pHolm Reduction
CHCImb 0.8447 5.0931 0.543265 0.8536
EBUS-MS-GM 0.8432 5.2745 0.543265 0.8261
SSMAImb 0.8412 4.6471 - 0.8408
SGAImb 0.8326 5.2010 0.543265 0.8471
GGAImb 0.8263 6.0490 0.007548 0.8238
RUS 0.8248 6.7157 0.000010 0.8246
SMOTE-HMNEI 0.8212 5.2794 0.543265 -0.0535
SMOTE-ENNTh 0.8208 5.6667 0.113212 -0.5490
SMOTE-TL 0.8192 5.5441 0.206107 -0.7858
SMOTE-RNG 0.8153 5.5294 0.206107 -0.7163
SMOTE-ENN 0.8110 - - -0.7761
IGAImb 0.8099 - - 0.8039
ENNThImb-SMT 0.8059 - - -0.7135
RNGImb-SMT 0.8014 - - -0.7699
MoCSImb-SMT 0.8005 - - -0.7750
ENNImb-SMT 0.7987 - - -0.7959
NCNEditImb-SMT 0.7971 - - -0.7910
SMOTE-MoCS 0.7917 - - -0.7533
SMOTE 0.7889 - - -0.8246
SMOTE-RSB 0.7807 - - -0.8246
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Table 13.6: Classification by C45 after preprocessing, evaluated by g. The p-value of the
Friedman test is 0.002628, such that we conclude significant differences to be
present. The lowest ranked method is SMOTE-ENNTh and is marked in bold.
The p-values of the Holm post-hoc procedure are listed, comparing SMOTE-
ENNTh to the other methods in the top 10. Significant differences are marked
in bold. The final column presents the obtained reduction. Negative values
correspond to an average increase in size of the dataset.

g Friedman rank pHolm Reduction
EBUS-MS-GM 0.8123 5.4804 0.758230 0.8261
SMOTE-ENNTh 0.8094 4.8971 - -0.5490
SMOTE-RNG 0.8058 4.8971 ≥ 0.999999 -0.7163
CHCImb 0.8047 5.6471 0.461311 0.8536
SMOTE-HMNEI 0.8013 5.7010 0.405499 -0.0535
SMOTE-TL 0.8010 5.0049 ≥ 0.999999 -0.7858
RUS 0.8005 6.3873 0.003958 0.8246
SSMAImb 0.7993 6.1520 0.024613 0.8408
SMOTE-ENN 0.7952 5.5049 0.758230 -0.7761
RNGImb-SMT 0.7930 5.3284 0.926755 -0.7699
NCNEditImb-SMT 0.7927 - - -0.7910
GGAImb 0.7920 - - 0.8238
MoCSImb-SMT 0.7913 - - -0.7750
SGAImb 0.7913 - - 0.8471
ENNThImb-SMT 0.7879 - - -0.7135
SMOTE-MoCS 0.7869 - - -0.7533
SMOTE 0.7860 - - -0.8246
IGAImb 0.7858 - - 0.8039
ENNImb-SMT 0.7847 - - -0.7959
SMOTE-RSB 0.7780 - - -0.8246
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Table 13.7: Classification by SVM after preprocessing, evaluated by g. The p-value of the
Friedman test is smaller than 0.000001, such that we conclude significant differ-
ences to be present. The lowest ranked method is SMOTE-MoCS and is marked
in bold. The p-values of the Holm post-hoc procedure are listed, comparing
SMOTE-MoCS to the other methods in the top 10. Significant differences are
marked in bold. The final column presents the obtained reduction. Negative
values correspond to an average increase in size of the dataset.

g Friedman rank pHolm Reduction
SMOTE-TL 0.8471 5.2353 0.093748 -0.7858
MoCSImb-SMT 0.8449 5.4902 0.025701 -0.7750
ENNThImb-SMT 0.8447 5.2647 0.093748 -0.7135
SMOTE-MoCS 0.8446 4.3039 - -0.7533
SMOTE-RNG 0.8440 6.5049 0.000002 -0.7163
NCNEditImb-SMT 0.8438 4.9363 0.271632 -0.7910
RNGImb-SMT 0.8421 5.8284 0.001940 -0.7699
SMOTE-HMNEI 0.8415 6.1078 0.000146 -0.0535
SMOTE-ENN 0.8412 6.6863 ≤ 0.000001 -0.7761
SMOTE-RSB 0.8399 4.6422 0.424982 -0.8246
SMOTE-ENNTh 0.8389 - - -0.5490
SMOTE 0.8386 - - -0.8246
ENNImb-SMT 0.8381 - - -0.7959
EBUS-MS-GM 0.8181 - - 0.8261
RUS 0.8122 - - 0.8246
CHCImb 0.8086 - - 0.8536
SSMAImb 0.8074 - - 0.8408
SGAImb 0.8069 - - 0.8471
GGAImb 0.7949 - - 0.8238
IGAImb 0.7855 - - 0.8039

Table 13.8: Classification results of the cost-sensitive learners and EUSBoost. The final col-
umn lists the average execution times.

AUC g Time (s)
CS-3NN 0.8438 0.7835 0.0895
CS-5NN 0.8606 0.8111 0.0924
CS-7NN 0.8661 0.8199 0.0883
CS-9NN 0.8723 0.8256 0.0952
CS-C4.5 0.8263 0.7754 0.5000
CS-SVM 0.8952 0.8347 63.2796
EUSBoost 0.9095 0.8433 3176.6910
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Table 13.9: Results of the Friedman test comparing the g values of nine of the best perform-
ing methods in the classification of our imbalanced datasets. The lowest ranked
method is EUSBoost and is marked in bold. The p-value of the test is 0.344728,
meaning that we can not conclude that significant differences are present. The
final column lists the average execution times. For the combinations of a prepro-
cessing step and classifier, the total running time is given.

g Friedman rank Time (s)
SMOTE-TL+SVM 0.8471 5 25.0621
MoCSImb-SMT+SVM 0.8449 5.2304 23.1203
CHCImb+1NN 0.8447 5.1029 647.8623
SMOTE-MoCS+SVM 0.8446 4.5686 23.7676
NCNEditImb-SMT+SVM 0.8438 4.9755 34.8637
EUSBoost 0.8433 4.5 3176.6910
EBUS-MS-GM+1NN 0.8432 5.3333 697.4217
SSMAImb+1NN 0.8412 5.0882 39.3550
SGAImb+1NN 0.8326 5.201 1128.1757
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Conclusion

In this work, we provided a detailed study of IS and assessed its use for improving the
classification of imbalanced data. A total number of 33 original IS methods were modified to
better suit the particular challenges posed by class imbalance. The resulting set of algorithms
were denoted as ISImb methods.

We conducted an extensive experimental study on 102 imbalanced datasets, using three dif-
ferent classifiers. In a first stage, we compared the ISImb methods to their original IS forms.
A vast improvement was observed. We continued this study by comparing the results of the
classification with and without preprocessing by ISImb. The majority of the ISImb methods
were able to significantly improve the baseline classification results. Several condensation
methods, where the aim is to considerably reduce the dataset without negatively affecting
the classification, also performed well and were even able to obtain the desired reduction with
an increase in classification performance. This leads us to conclude that the main research
question posed in this work can be answered in the affirmative way: the classification of
imbalanced data can significantly be improved by IS.

We also considered the interaction of IS and the popular oversampling technique SMOTE.
Firstly, we studied the setting ISImb-SMOTE, in which the training set reduced by ISImb was
balanced by SMOTE before being used in the classification. Our experiments showed that the
best performing ISImb methods did not benefit significantly from the additional oversampling,
proving that their real strength can be found in the ISImb step itself. Furthermore, inspired by
the good performance of the hybrid resampling technique SMOTE-ENN, we verified whether
other SMOTE-IS methods also yield good classification results. We were able to show that
several other editing methods, like HMNEI and MoCS, constitute valid replacements for ENN
in this setup and can significantly improve SMOTE itself.

Finally, we compared the ISImb, ISImb-SMOTE and SMOTE-IS methods to a large group of
state-of-the-art techniques dealing with data imbalance. It was shown that in the classification
by 1NN, our methods rank among the top performing approaches. C4.5 and SVM yielded
the best results for preprocessing methods that increase the size of the dataset. The results
of the ensemble method EUSBoost also placed it among the best performing methods.

EUSBoost incorporates the EUS methods within the boosting framework and it was concluded
in Section 13.2 that it is one of the best performing methods in the classification of imbalanced
data. As future work, it will be interesting to replace the EUS step by ISImb and verify whether
this improves the performance of this ensemble learner.

205



Conclusion

206



Appendix





A Datasets

Due to a lack of benchmark imbalanced datasets for binary classification purposes (e.g. [55]),
they have been constructed starting from original multi-class datasets. As is common practice
in this domain (see for instance [2], [39], [120], [126]), in order to obtain imbalanced datasets,
a subset of the classes are combined into one, labeled as the positive class, while another
subset of classes, disjunctive from the former, form the negative class. This procedure allows
us to control both the size and IR of the resulting dataset.

Datasets constructed by the method described above have been used in a large body of
experimental work regarding imbalanced data (e.g. [39], [89]). In our experimental study,
we have worked with a total number of 102 datasets. The IR of these datasets ranges from
1.86 to 129.44. 63 of them were obtained from the KEEL dataset repository1. We have
constructed the remaining 39 by the procedure above, starting from original datasets that are
also available from the repository.

Table A.1 provides a summary of the datasets, ordered by increasing values of the IR. Ad-
ditional columns present the cardinalities of the majority (Maj) and minority (Min.) classes.
The sizes of the datasets (Inst.) vary between 92 and 5472 instances. Finally, information
about the attributes (Attr.) of the instances is presented as well, specifying presence of con-
tinuous (C), discrete (D) or nominal (N) attributes. In the next section, we offer a complete
survey of the datasets with information about the original dataset and its features.

Dataset Maj. Min. IR Inst. Attr. (C/D/N)
glass1 138 76 1.82 214 (9/0/0)
ecoli-0 vs 1 143 77 1.86 220 (0/9/0)
wisconsinImb 444 239 1.86 683 (7/0/0)
iris0 100 50 2.00 150 (4/0/0)
glass0 144 70 2.06 214 (9/0/0)
yeast1 1055 429 2.46 1484 (8/0/0)
habermanImb 225 81 2.78 306 (0/3/0)
vehicle2 628 218 2.88 846 (0/18/0)
vehicle1 629 217 2.90 846 (0/18/0)
vehicle3 634 212 2.99 846 (0/18/0)
glass-0-1-2-3 vs 4-5-6 163 51 3.20 214 (9/0/0)
vehicle0 647 199 3.25 846 (0/18/0)

1www.KEEL.es
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ecoli1 259 77 3.36 336 (7/0/0)
appendicitisImb 85 21 4.05 106 (7/0/0)
new-thyroid1 180 35 5.14 215 (4/1/0)
new-thyroid2 180 35 5.14 215 (4/1/0)
ecoli2 284 52 5.46 336 (7/0/0)
segment0 1979 329 6.02 2308 (19/0/0)
glass6 185 29 6.38 214 (9/0/0)
yeast3 1321 163 8.10 1484 (8/0/0)
ecoli3 301 35 8.60 336 (7/0/0)
page-blocks0 4913 559 8.79 5472 (4/6/0)
ecoli-0-3-4 vs 5 180 20 9.00 200 (7/0/0)
ecoli-0-6-7 vs 3-5 200 22 9.09 222 (7/0/0)
yeast-2 vs 4 464 51 9.10 515 (7/0/0)
ecoli-0-2-3-4 vs 5 182 20 9.10 202 (7/0/0)
glass-0-1-5 vs 2 155 17 9.12 172 (9/0/0)
yeast-0-3-5-9 vs 7-8 456 50 9.12 506 (8/0/0)
yeast-0-2-5-6 vs 3-7-8-9 905 99 9.14 1004 (8/0/0)
yeast-0-2-5-7-9 vs 3-6-8 905 99 9.14 1004 (8/0/0)
ecoli-0-4-6 vs 5 183 20 9.15 203 (6/0/0)
ecoli-0-1 vs 2-3-5 220 24 9.17 244 (7/0/0)
ecoli-0-2-6-7 vs 3-5 202 22 9.18 224 (7/0/0)
glass-0-4 vs 5 83 9 9.22 92 (9/0/0)
ecoli-0-3-4-6 vs 5 185 20 9.25 205 (7/0/0)
ecoli-0-3-4-7 vs 5-6 232 25 9.28 257 (7/0/0)
yeast-0-5-6-7-9 vs 4 477 51 9.35 528 (8/0/0)
ecoli-0-6-7 vs 5 200 20 10.00 220 (6/0/0)
glass-0-1-6 vs 2 175 17 10.29 192 (9/0/0)
ecoli-0-1-4-7 vs 2-3-5-6 307 29 10.59 336 (7/0/0)
ecoli-0-1 vs 5 220 20 11.00 240 (6/0/0)
glass-0-6 vs 5 99 9 11.00 108 (9/0/0)
glass-0-1-4-6 vs 2 188 17 11.06 205 (9/0/0)
glass2 197 17 11.59 214 (9/0/0)
ecoli-0-1-4-7 vs 5-6 307 25 12.28 332 (7/0/0)
cleveland-0 vs 4 160 13 12.31 173 (13/0/0)
ecoli-0-1-4-6 vs 5 260 20 13.00 280 (6/0/0)
movement-libras-1 312 24 13.00 336 (90/0/0)
shuttle-c0-vs-c4 1706 123 13.87 1829 (0/9/0)
yeast-1 vs 7 429 30 14.30 459 (7/0/0)
glass4 201 13 15.46 214 (9/0/0)
ecoli4 316 20 15.80 336 (7/0/0)
page-blocks-1-3 vs 4 444 28 15.86 472 (4/6/0)
abalone9-18 689 42 16.40 731 (7/0/1)
glass-0-1-6 vs 5 175 9 19.44 184 (9/0/0)
shuttle-c2-vs-c4 123 6 20.50 129 (0/9/0)
cleveland-4 284 13 21.85 297 (13/0/0)
shuttle-6 vs 2-3 220 10 22.00 230 (0/9/0)
yeast-1-4-5-8 vs 7 663 30 22.10 693 (8/0/0)
ionosphere-bred vs g 225 10 22.50 235 (32/1/0)
glass5 205 9 22.78 214 (9/0/0)
yeast-2 vs 8 462 20 23.10 482 (8/0/0)
wdbc-MredB vs B 357 15 23.80 372 (30/0/0)
texture-2red vs 3-4 1000 42 23.81 1042 (40/0/0)
yeast4 1433 51 28.10 1484 (8/0/0)
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winequalityred-4 1546 53 29.17 1599 (11/0/0)
kddcup-guess-passwd vs satan 1589 53 29.98 1642 (26/0/15)
yeast-1-2-8-9 vs 7 917 30 30.57 947 (8/0/0)
abalone-3 vs 11 487 15 32.47 502 (7/0/1)
winequalitywhite-9 vs 4 163 5 32.60 168 (11/0/0)
yeast5 1440 44 32.73 1484 (8/0/0)
winequalityred-8 vs 6 638 18 35.44 656 (11/0/0)
ionosphere-bredB vs g 225 6 37.50 231 (32/1/0)
ecoli-0-1-3-7 vs 2-6 274 7 39.14 281 (7/0/0)
abalone-17 vs 7-8-9-10 2280 58 39.31 2338 (7/0/1)
abalone-21 vs 8 567 14 40.50 581 (7/0/1)
yeast6 1449 35 41.40 1484 (8/0/0)
segment-7red vs 2-4-5-6 1320 31 42.58 1351 (19/0/0)
winequalitywhite-3 vs 7 880 20 44.00 900 (11/0/0)
wdbc-Mred vs B 357 8 44.63 365 (30/0/0)
segment-5red vs 1-2-3 990 22 45.00 1012 (19/0/0)
winequalityred-8 vs 6-7 837 18 46.50 855 (11/0/0)
phoneme-1red vs 0red 2490 53 46.98 2543 (5/0/0)
texture-6red vs 7-8 1000 21 47.62 1021 (40/0/0)
kddcup-land vs portsweep 1040 21 49.52 1061 (26/0/15)
abalone-19 vs 10-11-12 1590 32 49.69 1622 (7/0/1)
magic-hred vs gred 2597 48 54.10 2645 (10/0/0)
winequalitywhite-3-9 vs 5 1457 25 58.28 1482 (11/0/0)
shuttle-2 vs 5 3267 49 66.67 3316 (0/9/0)
winequalityred-3 vs 5 681 10 68.10 691 (11/0/0)
phoneme-1redB vs 0redB 2300 33 69.70 2333 (5/0/0)
texture-12red vs 13-14 1000 14 71.43 1014 (40/0/0)
abalone-20 vs 8-9-10 1890 26 72.69 1916 (7/0/1)
kddcup-bufferoverflow vs back 2203 30 73.43 2233 (26/0/15)
kddcup-land vs satan 1589 21 75.67 1610 (26/0/15)
shuttle-2 vs 1red 4000 49 81.63 4049 (0/9/0)
segment-6red vs 3-4-5 990 12 82.50 1002 (19/0/0)
shuttle-6-7 vs 1red 2000 23 86.96 2023 (0/9/0)
magic-hredB vs gredB 2376 27 88.00 2403 (10/0/0)
texture-7red vs 2-3-4-6 2000 21 95.24 2021 (40/0/0)
kddcup-rootkit-imap vs back 2203 22 100.14 2225 (26/0/15)
abalone19 4142 32 129.44 4174 (7/0/1)

Table A.1: Summary of the 102 datasets.

Remark on notation

The names of the imbalanced datasets are chosen such that they indicate how they have been
constructed, i.e. which original classes have been joined to form the positive and negative
classes. It is not necessary for all original classes to be included in either the positive or
negative class, meaning that we do not always use the entire original dataset.

As an example, consider ecoli-0-1 vs 2-3-5. The name of this imbalanced dataset tells us that
we started from the ecoli-dataset and combined classes 0 and 1 into the positive class, while
the elements of classes 2, 3 and 5 are relabeled as negative. Class 4 has not been used. When
only one group is mentioned, this means that this group of classes is chosen as the positive
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class and the remainder of the original dataset is considered as negative. Examples of this
setup are found in the datasets cleveland-4 and vehicle0.

When the suffix ‘red’ is used, it means that only a subset of the class has been used. In
some cases, the same class will be undersampled for more than one new dataset. In such a
situation, the second time the class is used, it will be labeled with ‘redB’, indicating that
some other subset was used.

Finally, there are 3 original datasets, habermanImb, wisconsinImb and appendicitisImb, of
which the imbalance, however low, was high enough for them to be included in our experiments
in their original form.

A.1 Description

In this section we describe the original datasets used in the construction of the imbalanced
ones. Additional information can be found on the KEEL dataset description page2 and at
the UCI dataset repository 3.

abalone

Abalone is a group name to denote large edible sea snails. The aim corresponding to this
dataset is age prediction. In practice, the age is traditionally predicted by counting the
number of rings on the shell, but other measurements exist as well. The class label in this
dataset is the number of rings. When 1.5 is added to this number, the age is obtained. There
are eight attributes.

appendicitis

This dataset contains 106 instances described by 7 features. The features are continuous and
represent medical information. The dataset is included in its original form, but the suffix
‘Imb’ has been added, since we have relabeled the minority class (class 1) as positive and the
majority class (class 0) as negative.

cleveland

This dataset aims to predict the presence of heart disease in patients. The data was obtained
from the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. The thirteen
attributes represent medical information about a patient. The class label can take on an
integer value between 0 and 4 and is based on the percentage of diameter narrowing of the
blood vessels. Class 0 is interpreted as the absence of heart disease.

ecoli

E. coli is a type of bacteria found in the lower intestine. The ecoli dataset is used to predict
the localization site of proteins, based on 7 measures taken from the cell. 8 different outcomes
are possible.

2www.KEEL.es
3archive.ics.uci.edu/ml
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glass

This dataset represents the prediction of the type of glass based on its chemical composition.
The original class label is an integer between 0 and 6, making a distinction between seven
types of glass. For example, class 6 corresponds to glass used in headlamps. Out of the
nine attributes, eight correspond to chemical elements, where the unit of measurement is the
weight percent of the corresponding oxide. The ninth attribute is the refractive index.

haberman

The original dataset contains two classes and is already imbalanced. The dataset was obtained
from a study conducted at the University of Chicago’s Billings Hospital, in which the survival
of patients after breast cancer surgery was recorded. The positive class corresponds to a
survival of more than five years after surgery, while belonging to the negative class means
that the patient passed away before the five-year mark. The name of the dataset refers to
S.J. Haberman, who used this dataset in his 1976 research. We denote the dataset used in
our experimental study by habermanImb, but it is exactly the same as the original set.

ionosphere

The instances in the ionosphere dataset correspond to radar returns from the ionosphere.
Signals are targeted to free electrons in the ionosphere and can either be returned to earth
or not. Returned or good (g) signals form evidence of structure in the ionosphere. The other
signals pass through the ionosphere and are denoted as bad (b).

iris

This dataset predicts the specific type of an iris plant. The three varieties present in the
dataset are iris Setosa, iris Versicolour and iris Virginica. One of the classes, iris Setosa,
is linearly separable from the other two. This class is taken as the positive class in the
imbalanced dataset, while the remaining instances are combined to form the negative class.
This new dataset is referred to as iris0. The dataset contains four attributes, representing
characteristics of a plant, namely length and width of the petals and sepals.

kddcup

The kddcup dataset stems from the 1999 KDD intrusion detection contest, for which the task
was to build a predictive model to distinguish between good and bad connections, based on
the observed values for 40 features. Bad connections correspond to intrusions or attacks. 23
outcomes are possible, corresponding to the indicative names of the classes, e.g. bufferoverflow.

magic

The data was obtained from the Major Atmospheric Gamma Imaging Cherenkov Telescope
project (MAGIC) and simulate the registration of high energy gamma particles. Each instance
is described by 10 features and can be classified as a gamma particle (g) or a hadron (h),
which corresponds to background.
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movement-libras

An instance corresponds to a hand movement in the Brazilian signal language LIBRAS (LIn-
gua BRAsilieira de Sinais). Fifteen different movements are included, such as a curved swing
or horizontal zigzag. The classes are represented by integers. The 90 features represent po-
sitional coordinates. In the imbalanced dataset constructed for our experiments, movement-
libras-1, one aims to distinguish the curved swing movement from any other.

new-thyroid

For the new-thyroid dataset, the aim is to predict, based on the values for five features
representing medical information, whether the thyroid gland is functioning normal or that
the patient is experiencing hyper- or hypothyroidism.

Two imbalanced datasets have been constructed. In new-thyroid1, the positive instances cor-
respond to patients suffering from hyperthyroidism. In a similar way, new-thyroid2 compares
the elements from the hypothyroidism class to the remainder of the dataset.

page-blocks

Page-blocks is a dataset containing examples from 54 documents, each representing a block.
Ten features are used to capture the graphical information, e.g. the area of the block. The five
classes in the original dataset correspond to the different types of blocks: text (0), horizontal
(1) and vertical (3) lines, graphics (2) or pictures (4).

phoneme

Phoneme is a two-class dataset. Class 0 represents nasal and class 1 oral sounds in spoken
words. The dataset is used in research on speech recognition. The five attributes correspond
to different phonemes in the English language.

segment

This dataset documents image segmentation, in which seven outdoor images were segmented
in regions of 3x3 pixels. Each such region corresponds to an instance in the dataset. Nineteen
continuous attributes are used to describe the graphical properties of the regions. The goal
is to correctly classify the regions as being of one of seven possible types (brickface (1), sky
(2), foliage (3), cement (4), window (5), path (6) or glass (7)).

shuttle

The shuttle dataset uses nine features to describe each instance. The classification task is
to decide which type of control is advisable for an airplane. Seven classes are present in the
original dataset.

texture

Texture is a dataset where a distinction is made between eleven different types of texture.
Each instance in the dataset corresponds to a pixel, described by 40 attributes.
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vehicle

The goal related to the vehicle dataset is to classify a silhouette as one of four types of vehicle.
These types correspond to the class labels (Van (0), Saab (1), Bus (2) and Opel (3)). Eighteen
features are extracted from 2D images by an ensemble of shape feature extractors.

wdbc

Like the wisconsin dataset, wdbc aims to classify tumors in the breast mass as malignant
(M) or benign (B). Thirty continuous features are extracted from digital images. We have
constructed two imbalanced datasets, wdbc-Mred vs B and wdbc-MredB vs B, interpreting
benign tumors as negative, as this represents the absence of cancer.

winequality-red and winequality-white

These datasets reflect the appreciation of the Portuguese Vino Verde wine, for both the red
and white variety. The quality is measured by an integer score between 0 and 10. The features
describe physicochemical properties of the wine, such as its acidity.

wisconsin

This dataset was collected from a study concerning breast cancer and is used to classify tumors
as benign or malignant. Values for nine features are measured, all corresponding to different
characteristics of the observed tumor. We denote the imbalanced dataset by wisconsinImb,
but it is the same as the original. Class 2, corresponding to benign tumors, is labeled as
negative (absence of cancer) and class 4 as positive, indicating the presence of cancer.

yeast

The yeast dataset predicts the localization site of protein, i.e. where protein is located within
a cell. The dataset contains eight attributes, all of which are biological measures specifying
cellular characteristics. One of the attributes, pox (representing the peroxisomal targeting
signal in the C-terminus), has been left out in yeast-1 vs 7.
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